RESUMO
Natural hyperbolic materials with dielectric permittivities of opposite signs along different principal axes can confine long-wavelength electromagnetic waves down to the nanoscale, well below the diffraction limit. Confined electromagnetic waves coupled to phonons in hyperbolic dielectrics including hexagonal boron nitride (hBN) and α-MoO3 are referred to as hyperbolic phonon polaritons (HPPs). HPP dissipation at ambient conditions is substantial, and its fundamental limits remain unexplored. Here, we exploit cryogenic nanoinfrared imaging to investigate propagating HPPs in isotopically pure hBN and naturally abundant α-MoO3 crystals. Close to liquid-nitrogen temperatures, losses for HPPs in isotopic hBN drop significantly, resulting in propagation lengths in excess of 8 µm, with lifetimes exceeding 5 ps, thereby surpassing prior reports on such highly confined polaritonic modes. Our nanoscale, temperature-dependent imaging reveals the relevance of acoustic phonons in HPP damping and will be instrumental in mitigating such losses for miniaturized mid-infrared technologies operating at liquid-nitrogen temperatures.
RESUMO
The phonon linewidth of isotopically controlled hexagonal boron nitride (h-BN) single crystals has been determined by Raman scattering. The scattering by isotopic mass disorder induces a phonon broadening that is largest for boron 11 fractions around 0.65. Lowest-order perturbation theory does not suffice to explain the dependence of the isotopic broadening on isotopic composition. A multiple-scattering theory based on the coherent potential approximation provides a good quantitative account of the phonon shift and broadening with isotopic composition observed in the experiments. Isotopic-disorder scattering is shown to have a prominent role in limiting the optical-phonon lifetime in h-BN.
RESUMO
Identifying and mapping the crystalline phases and orientation relationships on the local scale in core-shell ZnO nanowire heterostructures are of primary importance to improve the interface quality, which governs the performances of the nanoscale devices. However, this represents a major difficulty, especially when the expected polytypes exhibit very similar properties as in the case of CdSe. In the present work, we address that issue in ZnO nanowire heterostructures involving a uniform and highly conformal CdSe shell grown by molecular beam epitaxy. It is shown by x-ray diffraction and Raman spectroscopy through the occurrence of the (101Ì0) and (101Ì1) diffraction peaks and of the [Formula: see text] mode at 34 cm-1, respectively, that the CdSe shell is mostly crystallized into the wurtzite phase. By using automated crystal phase and orientation mapping with precession (ASTAR) in a transmission electron microscope and thus by benefiting from highly precise electron diffraction patterns, the CdSe shell is found to crystallize also into the minority zinc blende phase. The wurtzite CdSe shell is epitaxially grown on the top of ZnO nanowires, and some specific orientation relationships are mapped and revealed when grown on their vertical sidewalls. Zinc blende CdSe domains are also formed exclusively in the center of wurtzite CdSe grains located on the vertical sidewalls; both wurtzite and zinc blende CdSe crystalline phases have a strong orientation relationship. These findings reveal that ASTAR is a powerful technique to elucidate the structural properties on the local scale and to gain a deeper insight into their crystalline phases and orientation relationships, which is highly promising for many types of semiconducting nanowire heterostructures.
RESUMO
The pressure dependence of the direct and indirect bandgap transitions of hexagonal boron nitride is investigated using optical reflectance under hydrostatic pressure in an anvil cell with sapphire windows up to 2.5 GPa. Features in the reflectance spectra associated with the absorption at the direct and indirect bandgap transitions are found to downshift with increasing pressure, with pressure coefficients of -26 ± 2 and -36 ± 2 meV GPa-1, respectively. The GW calculations yield a faster decrease of the direct bandgap with pressure compared to the indirect bandgap. Including the strong excitonic effects through the Bethe-Salpeter equation, the direct excitonic transition is found to have a much lower pressure coefficient than the indirect excitonic transition. This suggests a strong variation of the binding energy of the direct exciton with pressure. The experiments corroborate the theoretical predictions and indicate an enhancement of the indirect nature of the bulk hexagonal boron nitride crystal under hydrostatic pressure.