RESUMO
Radiation-induced pulmonary fibrosis (RTPF) is a progressive, serious condition in many subjects treated for thoracic malignancies or after accidental nuclear exposure. No biomarker exists for identifying the irradiated subjects most susceptible to pulmonary fibrosis (PF). Previously, we determined that gastrin-releasing peptide (GRP) was elevated within days after birth in newborns exposed to hyperoxia who later developed chronic lung disease. The goal of the current study was to test whether radiation (RT) exposure triggers GRP release in mice and whether this contributes to RTPF in vivo. We determined urine GRP levels and lung GRP immunostaining in mice 0 to 24 after post-thoracic RT (15 Gy). Urine GRP levels were significantly elevated between 24 hours post-RT; GRP-blocking monoclonal antibody 2A11, given minutes post-RT, abrogated urine GRP levels by 6 to 12 hours and also altered phosphoprotein signaling pathways at 24 hours post-RT. Strong extracellular GRP immunostaining was observed in lung at 6 hours post-RT. Mice given one dose of GRP monoclonal antibody 2A11 24 hours post-RT had significantly reduced myofibroblast accumulation and collagen deposition 15 weeks later, indicating protection against lung fibrosis. Therefore, elevation of urine GRP could be predictive of RTPF development. In addition, transient GRP blockade could mitigate PF in normal lung after therapeutic or accidental RT exposure.
Assuntos
Raios gama/efeitos adversos , Peptídeo Liberador de Gastrina/metabolismo , Fosfoproteínas/metabolismo , Fibrose Pulmonar/etiologia , Lesões por Radiação/etiologia , Animais , Feminino , Camundongos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Lesões por Radiação/metabolismo , Lesões por Radiação/patologiaRESUMO
Ozone and obesity both increase IL-17A in the lungs. In mice, obesity augments the airway hyperresponsiveness and neutrophil recruitment induced by acute ozone exposure. Therefore, we examined the role of IL-17A in obesity-related increases in the response to ozone observed in obese mice. Lean wild-type and obese db/db mice were pretreated with IL-17A-blocking or isotype antibodies, exposed to air or ozone (2 ppm for 3 h), and evaluated 24 hours later. Microarray analysis of lung tissue gene expression was used to examine the mechanistic basis for effects of anti-IL-17A. Compared with lean mice, ozone-exposed obese mice had greater concentrations of BAL IL-17A and greater numbers of pulmonary IL-17A+ cells. Ozone-induced increases in BAL IL-23 and CCL20, cytokines important for IL-17A+ cell recruitment and activation, were also greater in obese mice. Anti-IL-17A treatment reduced ozone-induced airway hyperresponsiveness toward levels observed in lean mice. Anti-IL-17A treatment also reduced BAL neutrophils in both lean and obese mice, possibly because of reductions in CXCL1. Microarray analysis identified gastrin-releasing peptide (GRP) receptor (Grpr) among those genes that were both elevated in the lungs of obese mice after ozone exposure and reduced after anti-IL-17A treatment. Furthermore, ozone exposure increased BAL GRP to a greater extent in obese than in lean mice, and GRP-neutralizing antibody treatment reduced obesity-related increases in ozone-induced airway hyperresponsiveness and neutrophil recruitment. Our data indicate that IL-17A contributes to augmented responses to ozone in db/db mice. Furthermore, IL-17A appears to act at least in part by inducing expression of Grpr.
Assuntos
Peptídeo Liberador de Gastrina/imunologia , Interleucina-17/imunologia , Obesidade/patologia , Ozônio/toxicidade , Receptores da Bombesina/metabolismo , Hipersensibilidade Respiratória/imunologia , Animais , Anticorpos Bloqueadores/farmacologia , Quimiocina CCL20/imunologia , Quimiocina CXCL1/imunologia , Feminino , Subunidade p19 da Interleucina-23/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Receptores da Bombesina/genéticaRESUMO
Cancer has been considered as temporal and spatial aberrations of normal development in tissues. Similarities between mammary embryonic development and cell transformation suggest that the underlying processes required for mammary gland development are also those perturbed during various stages of mammary tumorigenesis and breast cancer (BC) development. The master regulators of embryonic development Cripto-1, Notch/CSL, and Wnt/ß-catenin play key roles in modulating mammary gland morphogenesis and cell fate specification in the embryo through fetal mammary stem cells (fMaSC) and in the adult organism particularly within the adult mammary stem cells (aMaSC), which determine mammary progenitor cell lineages that generate the basal/myoepithelial and luminal compartments of the adult mammary gland. Together with recognized transcription factors and embryonic stem cell markers, these embryonic regulatory molecules can be inappropriately augmented during tumorigenesis to support the tumor-initiating cell (TIC)/cancer stem cell (CSC) compartment, and the effects of their deregulation may contribute for the etiology of BC, in particular the most aggressive subtype of BC, triple-negative breast cancer (TNBC). This in depth review will present evidence of the involvement of Cripto-1, Notch/CSL, and Wnt/ß-catenin in the normal mammary gland morphogenesis and tumorigenesis, from fMaSC/aMaSC regulation to TIC generation and maintenance in TNBC. Specific therapies for treating TNBC by targeting these embryonic pathways in TICs will be further discussed, providing new opportunities to destroy not only the bulk tumor, but also TICs that initiate and promote the metastatic spread and recurrence of this aggressive subtype of BC.
Assuntos
Glândulas Mamárias Humanas/crescimento & desenvolvimento , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/etiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Cripto-1 (CR-1)/Teratocarcinoma-derived growth factor1 (TDGF-1) is a cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein that can function either in cis (autocrine) or in trans (paracrine). The cell membrane cis form is found in lipid rafts and endosomes while the trans acting form lacking the GPI anchor is soluble. As a member of the epidermal growth factor (EGF)/Cripto-1-FRL-1-Cryptic (CFC) family, CR-1 functions as an obligatory co-receptor for the transforming growth factor-ß (TGF-ß) family members, Nodal and growth and differentiation factors 1 and 3 (GDF1/3) by activating Alk4/Alk7 signaling pathways that involve Smads 2, 3 and 4. In addition, CR-1 can activate non-Smad-dependent signaling elements such as PI3K, Akt and MAPK. Both of these pathways depend upon the 78kDa glucose regulated protein (GRP78). Finally, CR-1 can facilitate signaling through the canonical Wnt/ß-catenin and Notch/Cbf-1 pathways by functioning as a chaperone protein for LRP5/6 and Notch, respectively. CR-1 is essential for early embryonic development and maintains embryonic stem cell pluripotentiality. CR-1 performs an essential role in the etiology and progression of several types of human tumors where it is expressed in a population of cancer stem cells (CSCs) and facilitates epithelial-mesenchymal transition (EMT). In this context, CR-1 can significantly enhance tumor cell migration, invasion and angiogenesis. Collectively, these facts suggest that CR-1 may be an attractive target in the diagnosis, prognosis and therapy of several types of human cancer.
Assuntos
Transição Epitelial-Mesenquimal/genética , Proteínas Ligadas por GPI/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Invasividade Neoplásica/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neovascularização Patológica/genética , Receptores de Ativinas Tipo I/metabolismo , Membrana Celular/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Membrana/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteína Smad4/metabolismo , Proteínas da Superfamília de TGF-beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismoRESUMO
Cripto-1 (CR-1) is a multifunctional embryonic protein that is re-expressed during inflammation, wound repair, and malignant transformation. CR-1 can function either as a tethered co-receptor or shed as a free ligand underpinning its flexible role in cell physiology. CR-1 has been shown to mediate cell growth, migration, invasion, and induce epithelial to mesenchymal transition (EMT). The main signaling pathways mediating CR-1 effects include Nodal-dependent (Smad2/3) and Nodal-independent (Src/p44/42/Akt) signaling transduction pathways. In addition, there are several naturally occurring binding partner proteins (BPPs) for CR-1 that can either agonize or antagonize its bioactivity. We will review the collective role of CR-1 as an extracellular protein, discuss caveats to consider in developing a quantitation assay, define possible mechanistic avenues applicable for drug discovery, and report on our experimental approaches to overcome these problematic issues.
Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Autoanticorpos/imunologia , Fator de Crescimento Epidérmico/fisiologia , Transição Epitelial-Mesenquimal/imunologia , Espaço Extracelular/metabolismo , Humanos , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta/metabolismoRESUMO
Gastrin-releasing peptide (GRP), secreted by pulmonary neuroendocrine cells, mediates oxidant-induced lung injury in animal models. Considering that GRP blockade abrogates pulmonary inflammation and fibrosis in hyperoxic baboons, we hypothesized that ionizing radiation triggers GRP secretion, contributing to inflammatory and fibrotic phases of radiation-induced lung injury (RiLI). Using C57BL/6 mouse model of pulmonary fibrosis developing ≥20 weeks after high-dose thoracic radiation (15 Gy), we injected small molecule 77427 i.p. approximately 1 hour after radiation then twice weekly for up to 20 weeks. Sham controls were anesthetized and placed in the irradiator without radiation. Lung paraffin sections were immunostained and quantitative image analyses performed. Mice exposed to radiation plus PBS had increased interstitial CD68(+) macrophages 4 weeks after radiation and pulmonary neuroendocrine cells hyperplasia 6 weeks after radiation. Ten weeks later radiation plus PBS controls had significantly increased pSmad2/3(+) nuclei/cm(2). GRP blockade with 77427 treatment diminished CD68(+), GRP(+), and pSmad2/3(+) cells. Finally, interstitial fibrosis was evident 20 weeks after radiation by immunostaining for α-smooth muscle actin and collagen deposition. Treatment with 77427 abrogated interstitial α-smooth muscle actin and collagen. Sham mice given 77427 did not differ significantly from PBS controls. Our data are the first to show that GRP blockade decreases inflammatory and fibrotic responses to radiation in mice. GRP blockade is a novel radiation fibrosis mitigating agent that could be clinically useful in humans exposed to radiation therapeutically or unintentionally.
Assuntos
Peptídeo Liberador de Gastrina/antagonistas & inibidores , Lesão Pulmonar/tratamento farmacológico , Lesões por Radiação/tratamento farmacológico , Animais , Contagem de Células , Colágeno/metabolismo , Peptídeo Liberador de Gastrina/metabolismo , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células Neuroendócrinas/efeitos dos fármacos , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/patologia , Células Neuroendócrinas/efeitos da radiação , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Lesões por Radiação/complicações , Lesões por Radiação/patologia , Radiografia , Proteínas Smad/metabolismoRESUMO
Gastrin-releasing peptide (GRP) is synthesized by pulmonary neuroendocrine cells in inflammatory lung diseases, such as bronchopulmonary dysplasia (BPD). Many BPD infants develop asthma, a serious disorder of intermittent airway obstruction. Despite extensive research, early mechanisms of asthma remain controversial. The incidence of asthma is growing, now affecting >300 million people worldwide. To test the hypothesis that GRP mediates asthma, we used two murine models: ozone exposure for air pollution-induced airway hyperreactivity (AHR), and ovalbumin (OVA)-induced allergic airway disease. BALB/c mice were given small molecule GRP blocking agent 77427, or GRP blocking antibody 2A11, before exposure to ozone or OVA challenge. In both models, GRP blockade abrogated AHR and bronchoalveolar lavage (BAL) macrophages and granulocytes, and decreased BAL cytokines implicated in asthma, including those typically derived from Th1 (e.g., IL-2, TNFα), Th2 (e.g., IL-5, IL-13), Th17 (IL-17), macrophages (e.g., MCP-1, IL-1), and neutrophils (KC = IL-8). Dexamethasone generally had smaller effects on all parameters. Macrophages, T cells, and neutrophils express GRP receptor (GRPR). GRP blockade diminished serine phosphorylation of GRPR with ozone or OVA. Thus, GRP mediates AHR and airway inflammation in mice, suggesting that GRP blockade is promising as a broad-spectrum therapeutic approach to treat and/or prevent asthma in humans.
Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Peptídeo Liberador de Gastrina/antagonistas & inibidores , Animais , Líquido da Lavagem Broncoalveolar , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Every organ in the body requires blood vessels for efficient delivery of oxygen and nutrients, but independent vascular beds are highly specialized to meet the individual needs of specific organs. The vasculature of the brain is tightly sealed, with blood-brain barrier (BBB) properties developing coincident with neural vascularization. G protein-coupled receptor 124 (GPR124) (tumor endothelial marker 5, TEM5), an orphan member of the adhesion family of G protein-coupled receptors, was previously identified on the basis of its overexpression in tumor vasculature. Here, we show that global deletion or endothelial-specific deletion of GPR124 in mice results in embryonic lethality associated with abnormal angiogenesis of the forebrain and spinal cord. Expression of GPR124 was found to be required for invasion and migration of blood vessels into neuroepithelium, establishment of BBB properties, and expansion of the cerebral cortex. Thus, GPR124 is an important regulator of neurovasculature development and a potential drug target for cerebrovascular diseases.
Assuntos
Barreira Hematoencefálica/embriologia , Sistema Nervoso Central/irrigação sanguínea , Sistema Nervoso Central/embriologia , Embrião de Mamíferos/irrigação sanguínea , Receptores Acoplados a Proteínas G/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Western Blotting , Primers do DNA/genética , Embrião de Mamíferos/metabolismo , Citometria de Fluxo , Técnicas Histológicas , Hibridização In Situ , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Gastrin-releasing peptide (GRP), an evolutionarily conserved neuropeptide, significantly contributes to influenza-induced lethality and inflammation in rodent models. Because GRP is produced by pulmonary neuroendocrine cells (PNECs) in response to γ-aminobutyric acid (GABA), we hypothesized that influenza infection promotes GABA release from PNECs that activate GABAB receptors on PNECs to secrete GRP. Oxidative stress was increased in the lungs of influenza A/PR/8/34 (PR8)-infected mice, as well as serum glutamate decarboxylase 1, the enzyme that converts L-glutamic acid into GABA. The therapeutic administration of saclofen, a GABAB receptor antagonist, protected PR8-infected mice, reduced lung proinflammatory gene expression of C-C chemokine receptor type 2 (Ccr2), cluster of differentiation 68 (Cd68), and Toll like receptor 4 (Tlr4) and decreased the levels of GRP and high-mobility group box 1 (HMGB1) in sera. Conversely, baclofen, a GABAB receptor agonist, significantly increased the lethality and inflammatory responses. The GRP antagonist, NSC77427, as well as the GABAB antagonist, saclofen, blunted the PR8-induced monocyte infiltration into the lung. Together, these data provide the first report of neuroregulatory control of influenza-induced disease.
Assuntos
Influenza Humana , Camundongos , Animais , Humanos , Peptídeo Liberador de Gastrina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Baclofeno/farmacologiaRESUMO
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, debilitating respiratory disease whose pathogenesis is poorly understood. In IPF, the lung parenchyma undergoes extensive remodeling. We hypothesized that lymphangiogenesis is part of lung remodeling and sought to characterize pathways leading to lymphangiogenesis in IPF. We found that the diameter of lymphatic vessels in alveolar spaces in IPF lung tissue correlated with disease severity, suggesting that the alveolar microenvironment plays a role in the lymphangiogenic process. In bronchoalveolar lavage fluid (BALF) from subjects with IPF, we found short-fragment hyaluronic acid, which induced migration and proliferation of lymphatic endothelial cells (LECs), processes required for lymphatic vessel formation. To determine the origin of LECs in IPF, we isolated macrophages from the alveolar spaces; CD11b(+) macrophages from subjects with IPF, but not those from healthy volunteers, formed lymphatic-like vessels in vitro. Our findings demonstrate that in the alveolar microenvironment of IPF, soluble factors such as short-fragment hyaluronic acid and cells such as CD11b(+) macrophages contribute to lymphangiogenesis. These results improve our understanding of lymphangiogenesis and tissue remodeling in IPF and perhaps other fibrotic diseases as well.
Assuntos
Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/patologia , Linfangiogênese , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Antígeno CD11b/metabolismo , Movimento Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Saúde , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/farmacologia , Linfangiogênese/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Proteínas de Transporte Vesicular/metabolismoRESUMO
Collagen I, the most abundant protein in humans, is ubiquitous in solid tumors where it provides a rich source of exploitable metabolic fuel for cancer cells. While tumor cells were unable to exploit collagen directly, here we show they can usurp metabolic byproducts of collagen-consuming tumor-associated stroma. Using genetically engineered mouse models, we discovered that solid tumor growth depends upon collagen binding and uptake mediated by the TEM8/ANTXR1 cell surface protein in tumor-associated stroma. Tumor-associated stromal cells processed collagen into glutamine, which was then released and internalized by cancer cells. Under chronic nutrient starvation, a condition driven by the high metabolic demand of tumors, cancer cells exploited glutamine to survive, an effect that could be reversed by blocking collagen uptake with TEM8 neutralizing antibodies. These studies reveal that cancer cells exploit collagen-consuming stromal cells for survival, exposing an important vulnerability across solid tumors with implications for developing improved anticancer therapy.
Assuntos
Imunoconjugados , Neoplasias , Humanos , Camundongos , Animais , Sobrevivência Celular , Glutamina , Colágeno/metabolismo , Proteínas dos Microfilamentos , Receptores de Superfície CelularRESUMO
The aryl hydrocarbon receptor repressor (AHRR) is a bHLH/Per-ARNT-Sim transcription factor located in a region of chromosome 5 (5p15.3) that has been proposed to contain one or more tumor suppressor genes. We report here consistent downregulation of AHRR mRNA in human malignant tissue from different anatomical origins, including colon, breast, lung, stomach, cervix, and ovary, and demonstrate DNA hypermethylation as the regulatory mechanism of AHRR gene silencing. Knockdown of AHRR gene expression in a human lung cancer cell line using siRNA significantly enhanced in vitro anchorage-dependent and -independent cell growth as well as cell growth after transplantation into immunocompromised mice. In addition, knockdown of AHRR in non-clonable normal human mammary epithelial cells enabled them to grow in an anchorage-independent manner. Further, downregulation of AHRR expression in the human lung cancer cell line conferred resistance to apoptotic signals and enhanced motility and invasion in vitro and angiogenic potential in vivo. Ectopic expression of AHRR in tumor cells resulted in diminished anchorage-dependent and -independent cell growth and reduced angiogenic potential. These results therefore demonstrate that AHRR is a putative new tumor suppressor gene in multiple types of human cancers.
Assuntos
Genes Supressores de Tumor/fisiologia , Neoplasias/patologia , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Genes Supressores de Tumor/efeitos dos fármacos , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genéticaRESUMO
The adrenomedullin (AM) gene, adm, is widely expressed in the central nervous system (CNS) and several functions have been suggested for brain AM. Until now, a formal confirmation of these actions using genetic models has been elusive since the systemic adm knockout results in embryo lethality. We have built a conditional knockout mouse model using the Cre/loxP approach. When crossed with transgenic mice expressing the Cre recombinase under the tubulin Talpha-1 promoter, we obtained animals with no AM expression in the CNS but normal levels in other organs. These animals lead normal lives and do not present any gross morphological defect. Specific areas of the brain of animals lacking CNS AM contain hyperpolymerized tubulin, a consequence of AM downregulation. Behavioral analysis shows that mice with no AM in their brain have impaired motor coordination and are hyperactive and overanxious when compared to their wild-type littermates. Treatment with methylphenidate, haloperidol, and diazepam did not show differences between genotypes. Circulating levels of adrenocorticotropic hormone and corticosterone were similar in knockout and wild-type mice. Animals with no brain AM were less resistant to hypobaric hypoxia than wild-type mice, demonstrating the neuroprotective function of AM in the CNS. In conclusion, AM exerts a beneficial action in the brain by maintaining homeostasis both under normal and stress conditions.
Assuntos
Adrenomedulina/deficiência , Transtornos de Ansiedade/etiologia , Química Encefálica/fisiologia , Hipóxia/complicações , Adrenomedulina/fisiologia , Animais , Genótipo , Homeostase , Hipóxia/mortalidade , Transtornos Mentais/etiologia , Camundongos , Camundongos Knockout , Transtornos das Habilidades Motoras/etiologia , Taxa de Sobrevida , Tubulina (Proteína)RESUMO
RATIONALE: The etiology and pathogenesis of angiogenesis in idiopathic pulmonary fibrosis (IPF) is poorly understood. Inter-alpha-trypsin inhibitor (IaI) is a serum protein that can bind to hyaluronan (HA) and may contribute to the angiogenic response to tissue injury. OBJECTIVES: To determine whether IaI promotes HA-mediated angiogenesis in tissue injury. METHODS: An examination was undertaken of angiogenesis in IaI-sufficient and -deficient mice in the bleomycin model of pulmonary fibrosis and in angiogenesis assays in vivo and in vitro. IaI and HA in patients with IPF were examined. MEASUREMENTS AND MAIN RESULTS: IaI significantly enhances the angiogenic response to short-fragment HA in vivo and in vitro. lal deficiency Ieads to decreased angiogenesis in the matrigel model, and decreases lung angiogenesis after bleomycin exposure in mice. IaI is found in fibroblastic foci in IPF, where it colocalizes with HA. The colocalization is particularly strong in vascular areas around fibroblastic foci. Serum levels of IaI and HA are significantly elevated in patients with IPF compared with control subjects. High serum IaI and HA levels are associated with decreased lung diffusing capacity, but not FVC. CONCLUSIONS: Our findings indicate that serum IaI interacts with HA, and promotes angiogenesis in lung injury. IaI appears to contribute to the vascular response to lung injury and may lead to aberrant angiogenesis. Clinical trial registered with www.clinicaltrials.gov (NCT00016627).
Assuntos
alfa-Globulinas/metabolismo , Indutores da Angiogênese/sangue , Ácido Hialurônico/sangue , Lesão Pulmonar/sangue , Neovascularização Patológica/sangue , Fibrose Pulmonar/sangue , Animais , Antibióticos Antineoplásicos/administração & dosagem , Bleomicina/administração & dosagem , Técnicas de Cultura de Células , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Humanos , Pulmão/irrigação sanguínea , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/fisiopatologia , Índice de Gravidade de Doença , Capacidade VitalRESUMO
Triple-negative breast cancer (TNBC) represents the poorest prognosis among all of breast cancer subtypes with no currently available effective therapy. In this study, we hypothesized that sulforaphane, a dietary component abundant in broccoli and its sprouts, can inhibit malignant cell proliferation and tumor sphere formation of cancer stem-like cells (CSC) in TNBC. CSC population was isolated using FACS analysis with the combined stem cell surface markers, CD44+/CD24-/CD49f+ The effect of sulforaphane on a stem-related embryonic oncogene CRIPTO-1/TDGF1 (CR1) was evaluated via ELISA. In vivo, BalbC/nude mice were supplemented with sulforaphane before and after TNBC cell inoculation (daily intraperitoneal injection of 50 mg sulforaphane/kg for 5 and 3 weeks, respectively), and the effects of sulforaphane during mammary tumor initiation and growth were accessed with NanoString gene analysis. We found that sulforaphane can inhibit cell proliferation and mammosphere formation of CSCs in TNBC. Further analysis of gene expression in these TNBC tumor cells revealed that sulforaphane significantly decreases the expression of cancer-specific CR1, CRIPTO-3/TDGF1P3 (CR3, a homologue of CR1), and various stem cell markers including Nanog, aldehyde dehydrogenase 1A1 (ALDH1A1), Wnt3, and Notch4. Our results suggest that sulforaphane may control the malignant proliferation of CSCs in TNBC via Cripto-mediated pathway by either suppressing its expression and/or by inhibiting Cripto/Alk4 protein complex formation. Thus, the use of sulforaphane for chemoprevention of TNBC is plausible and warrants further clinical evaluation.
Assuntos
Anticarcinógenos/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Isotiocianatos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Sulfóxidos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Gastrin-releasing peptide (GRP) is an evolutionarily well-conserved neuropeptide that was originally recognized for its ability to mediate gastric acid secretion in the gut. More recently, however, GRP has been implicated in pulmonary lung inflammatory diseases including bronchopulmonary dysplasia, chronic obstructive pulmonary disease, emphysema, and others. Antagonizing GRP or its receptor mitigated lethality associated with the onset of viral pneumonia in a well-characterized mouse model of influenza. In mice treated therapeutically with the small-molecule GRP inhibitor, NSC77427, increased survival was accompanied by decreased numbers of GRP-producing pulmonary neuroendocrine cells, improved lung histopathology, and suppressed cytokine gene expression. In addition, in vitro studies in macrophages indicate that GRP synergizes with the prototype TLR4 agonist, lipopolysaccharide, to induce cytokine gene expression. Thus, these findings reveal that GRP is a previously unidentified mediator of influenza-induced inflammatory disease that is a potentially novel target for therapeutic intervention.
Assuntos
Peptídeo Liberador de Gastrina/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/imunologia , Pulmão/patologia , Macrófagos/imunologia , Células Neuroendócrinas/metabolismo , Infecções por Orthomyxoviridae/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Peptídeo Liberador de Gastrina/antagonistas & inibidores , Humanos , Imunidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirimidinas/farmacologia , Sigmodontinae , Transdução de Sinais , Receptor 4 Toll-Like/metabolismoRESUMO
Differentially expressed nucleolar transforming growth factor-beta1 target (DENTT), also known as testis-specific protein Y-encoded-like (TSPYL-2) and cell division autoantigen-1, is a member of the testis-specific protein Y-encoded (TSPY)/TSPY-L/SET/nucleosome assembly protein-1 superfamily. DENTT is expressed in various tissues including normal human lung. Here, we investigate the involvement of DENTT in cancer promotion and progression. DENTT messenger RNA (mRNA) and protein levels were shown to be markedly downregulated in human and mouse primary tumors and in human tumor cell lines. Overexpression of DENTT in human lung (A549-DENTT) and breast (MCF-7-DENTT) cancer cells resulted in diminished growth potential in anchorage-dependent growth assays and reduced capacity to form colonies under anchorage-independent culture conditions. The migratory potential of A549-DENTT and MCF-7-DENTT cells was reduced when compared with empty vector control cells. Treating human lung cell lines with demethylating agents increased DENTT expression significantly. DENTT expression pattern paralleled that of transforming growth factor-beta1 (TGF-beta1) in normal and malignant tissue and ectopic expression or treatment with TGF-beta1 in lung cancer cells was followed by increased DENTT mRNA and protein levels. Collectively, our results suggest a role for DENTT as a suppressor of the tumorigenic phenotype.
Assuntos
Neoplasias da Mama/metabolismo , Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células , Proteínas de Ligação a DNA , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Proteínas Nucleares/genética , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are secretory hormones, but it is not unusual to find them in intracellular compartments. Using yeast-2 hybrid technology, we found interactions between AM and several microtubule-associated proteins (MAPs), and between PAMP and tubulin. Expression of fluorescent-tagged AM and PAMP as well as immunofluorescence for the native peptides showed a complete decoration of the microtubules and colocalization with other MAPs. PAMP, but not AM, bound to tubulin in vitro and destabilized tubulin polymerization. Down-regulation of the gene coding for both AM and PAMP through small interfering RNA technology resulted in morphological changes, microtubule stabilization, increase in posttranslational modifications of tubulin such as acetylation and detyrosination, reduction in cell motility, and partial arrest at the G2 phase of the cell cycle, when compared with cells transfected with the same vector carrying a scrambled sequence. These results show that PAMP is a novel MAP, whereas AM may be exerting more subtle effects in regulating cytoskeleton function.
Assuntos
Adrenomedulina/fisiologia , Citoesqueleto/fisiologia , Microtúbulos/fisiologia , Fragmentos de Peptídeos/fisiologia , Precursores de Proteínas/fisiologia , Adenocarcinoma , Adrenomedulina/química , Adrenomedulina/genética , Animais , Células CHO , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetinae , Cricetulus , Haplorrinos , Humanos , Neoplasias Pulmonares , Precursores de Proteínas/química , Precursores de Proteínas/genéticaRESUMO
RATIONALE: The incidence of bronchopulmonary dysplasia (BPD), a chronic lung disease of newborns, is paradoxically rising despite medical advances. We demonstrated elevated bombesin-like peptide levels in infants that later developed BPD. In the 140-day hyperoxic baboon model of BPD, anti-bombesin antibody 2A11 abrogated lung injury. OBJECTIVES: To test the hypothesis that bombesin-like peptides mediate BPD in extremely premature baboons (born at Gestational Day 125 and given oxygen pro re nata [PRN], called the 125-day PRN model), similar to "modern-day BPD." METHODS: The 125-day animals were treated with 2A11 on Postnatal Day 1 (P1), P3, and P6. On P14 and P21, lungs were inflation-fixed for histopathologic analyses of alveolarization. Regulation of angiogenesis by bombesin was evaluated using cultured pulmonary microvascular endothelial cells. MEASUREMENTS AND MAIN RESULTS: In 125-day PRN animals, urine bombesin-like peptide levels at P2-3 are directly correlated with impaired lung function at P14. Gastrin-releasing peptide (the major pulmonary bombesin-like peptide) mRNA was elevated eightfold at P1 and remained high thereafter. At P14, 2A11 reduced alveolar wall thickness and increased the percentage of secondary septa containing endothelial cells. At P21, 2A11-treated 125-day PRN animals had improved alveolarization according to mean linear intercepts and number of branch points per millimeter squared. Bombesin promoted tubulogenesis of cultured pulmonary microvascular endothelial cells, but cocultured fetal lung mesenchymal cells abrogated this effect. CONCLUSIONS: Early bombesin-like peptide overproduction in 125-day PRN animals predicted alveolarization defects weeks later. Bombesin-like peptide blockade improved septation, with the greatest effects at P21. This could have implications for preventing BPD in premature infants.
Assuntos
Bombesina/fisiologia , Displasia Broncopulmonar/patologia , Peptídeo Liberador de Gastrina/fisiologia , Neovascularização Patológica/etiologia , Alvéolos Pulmonares/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/metabolismo , Técnicas de Cultura de Células , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Humanos , Recém-Nascido , Papio , RNA Mensageiro/metabolismoRESUMO
Thirteen years after the isolation of adrenomedullin (AM) from a human pheochromocytoma, the literature is awash with reports describing its implication in countless physiological and disease mechanisms ranging from vasodilatation to cancer promotion. A growing body of evidence illustrates AM as a pivotal component in normal physiology and disease with marked beneficial effects in the host defense mechanism. Exogenous administration of AM as well as its ectopic overexpression and the use of drugs, which potentiates its activity, are promising strategies for treatment of septic shock and several other pathogen-related disorders. Although major progress toward this end has been achieved over the past few years, our further understanding of the pleiotropic mechanisms involved with AM as a protective peptide is paramount to maximize its clinical application.