Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(1): e16559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151794

RESUMO

Pseudomonas donghuensis P482 exhibits broad antimicrobial activity against phytopathogens, including the soft rot bacteria of the Dickeya genus. Here, we report that under limited nutrient availability, the antibacterial activity of P. donghuensis P482 against Dickeya solani requires the reciprocal action of two iron scavengers: 7-hydroxytropolone (7-HT) and a newly characterized pyoverdine (PVDP482 ) and is quenched in the iron-augmented environment. Further, we show that the biosynthesis of pyoverdine and 7-HT is metabolically coordinated, and the functional BV82_4709 gene involved in 7-HT synthesis is pivotal for expressing the BV82_3755 gene, essential for pyoverdine biosynthesis and vice versa. The synthesis of both scavengers is under the control of Gac/Rsm, but only PVD is controlled by Fur. The isoelectric focusing profile of the P482 siderophore differs from that of the other Pseudomonas spp. tested. This finding led to the unveiling of the chemical structure of the new pyoverdine PVDP482 . To summarize, the antibacterial activity of P. donghuensis P482 is attributed to 7-HT and PVDP482 varies depending on the nutrient and iron availability, highlighting the importance of these factors in the competition between P482 and D. solani.


Assuntos
Ferro , Oligopeptídeos , Pseudomonas , Tropolona/análogos & derivados , Pseudomonas/genética , Sideróforos/genética , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612570

RESUMO

Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.


Assuntos
Gammaproteobacteria , Solanum tuberosum , Solanum , Hipóxia , Oxigênio , Agricultura
3.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474041

RESUMO

Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.


Assuntos
Solanum tuberosum , Solanum , Solanum/genética , Dickeya/genética , Solanum tuberosum/genética , Enterobacteriaceae/genética , Loci Gênicos , Doenças das Plantas
4.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569603

RESUMO

Biological plant protection presents a promising and exciting alternative to chemical methods for safeguarding plants against the increasing threats posed by plant diseases. This approach revolves around the utilization of biological control agents (BCAs) to suppress the activity of significant plant pathogens. Microbial BCAs have the potential to effectively manage crop disease development by interacting with pathogens or plant hosts, thereby increasing their resistance. However, the current efficacy of biological methods remains unsatisfactory, creating new research opportunities for sustainable plant cultivation management. In this context, microbial consortia, comprising multiple microorganisms with diverse mechanisms of action, hold promise in terms of augmenting the magnitude and stability of the overall antipathogen effect. Despite scientific efforts to identify or construct microbial consortia that can aid in safeguarding vital crops, only a limited number of microbial consortia-based biocontrol formulations are currently available. Therefore, this article aims to present a complex analysis of the microbial consortia-based biocontrol status and explore potential future directions for biological plant protection research with new technological advancements.


Assuntos
Produtos Agrícolas , Consórcios Microbianos , Doenças das Plantas/prevenção & controle , Agentes de Controle Biológico
5.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054882

RESUMO

In bacteria, the DsbA oxidoreductase is a crucial factor responsible for the introduction of disulfide bonds to extracytoplasmic proteins, which include important virulence factors. A lack of proper disulfide bonds frequently leads to instability and/or loss of protein function; therefore, improper disulfide bonding may lead to avirulent phenotypes. The importance of the DsbA function in phytopathogens has not been extensively studied yet. Dickeya solani is a bacterium from the Soft Rot Pectobacteriaceae family which is responsible for very high economic losses mainly in potato. In this work, we constructed a D. solani dsbA mutant and demonstrated that a lack of DsbA caused a loss of virulence. The mutant bacteria showed lower activities of secreted virulence determinants and were unable to develop disease symptoms in a potato plant. The SWATH-MS-based proteomic analysis revealed that the dsbA mutation led to multifaceted effects in the D. solani cells, including not only lower levels of secreted virulence factors, but also the induction of stress responses. Finally, the outer membrane barrier seemed to be disturbed by the mutation. Our results clearly demonstrate that the function played by the DsbA oxidoreductase is crucial for D. solani virulence, and a lack of DsbA significantly disturbs cellular physiology.


Assuntos
Dickeya/enzimologia , Isomerases de Dissulfetos de Proteínas , Virulência , Proteínas de Bactérias , Dickeya/patogenicidade , Oxirredutases , Proteínas Periplásmicas , Proteômica
6.
Mol Plant Microbe Interact ; 34(9): 1088-1092, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33861631

RESUMO

Dickeya solani is an emerging plant-pathogenic bacterium causing disease symptoms in a variety of agriculturally relevant crop species worldwide. To date, a number of D. solani genomes have been sequenced and characterized; the great majority of these genomes have, however, come from D. solani strains isolated from potato (Solanum tuberosum L.) and not from other plant hosts. Herewith, we present the first complete, high-quality genome of D. solani IPO 2019 (LMG 25990), isolated from the ornamental plant Hyacinthus orientalis. The genome of D. solani IPO 2019 consists of one chromosome of 4,919,542 bp, with a GC content of 56.2% and no plasmids. The genome contains 4,502 annotated features, 22 ribosomal RNA genes, 73 transfer RNA genes, and one CRISPR. We believe that the information on this high-quality, complete, closed genome of D. solani strain isolated from a host plant different from potato (i.e. hyacinth) will provide resources for comparative genomic studies and for analyses targeting adaptation and ecological fitness mechanisms present in Dickeya solani species.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Hyacinthus , Solanum tuberosum , Dickeya , Enterobacteriaceae/genética , Doenças das Plantas
7.
Mol Plant Microbe Interact ; 34(12): 1450-1454, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34428926

RESUMO

Strain P482 was isolated from a tomato rhizosphere and classified as Pseudomonas donghuensis. The P. donghuensis species was first established in 2015 and currently consists of only four strains: P482, HYST, SVBP6, and 22G5. P. donghuensis strains antagonize plant pathogens, including bacteria, fungi, and oomycetes, and, therefore, are of high interest regarding their biological control potential to combat plant diseases. The antimicrobial activity of P. donghuensis P482 is based on the production of iron-scavenging compound 7-hydroxytropolone, antifungal volatile organic compounds, and as-yet-unidentified secondary metabolites. Here, we report a complete genome resource for P. donghuensis strain P482. The genome consists of a single chromosome (5,656,185 bp) with 5,258 open reading frames (5,158 protein-coding genes, 74 transfer RNAs, 22 ribosomal RNAs, 3 noncoding RNAs, and 1 transfer-messenger RNA) and no plasmid. We believe that information on the first high-quality, complete genome of P. donghuensis will provide resources for analyses targeting the biological control potential of this species and understanding the traits essential for plant-microbe interaction.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Rizosfera , Solanum lycopersicum , Fungos , Doenças das Plantas , Pseudomonas
8.
Mol Plant Microbe Interact ; 34(11): 1328-1333, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34353114

RESUMO

Pectobacterium atrosepticum is a narrow-host-range, pectinolytic, plant-pathogenic bacterium causing blackleg of potato (Solanum tuberosum L.) worldwide. Till present, several P. atrosepticum genomes have been sequenced and characterized in detail; however, all of these genomes have come from P. atrosepticum isolates from plants grown in temperate zones, not from hosts cultivated under different climatic conditions. Herewith, we present the first complete, high-quality genome of the P. atrosepticum strain Green1 isolated from potato plants grown under a subarctic climate in Greenland. The genome of P. atrosepticum strain Green1 consists of one chromosome of 4,959,719 bp, with a GC content of 51% and no plasmids. The genome contains 4,531 annotated features, including 4,179 protein-coding genes, 22 ribosomal RNA genes, 70 transfer RNA genes, 8 noncoding RNA genes, 2 CRISPRs, and 126 pseudogenes. We believe that the information in this first high-quality, complete, closed genome of P. atrosepticum strains isolated from host plants grown in a subarctic agricultural region will provide resources for comparative genomic studies and for analyses targeting climatic adaptation and ecological fitness mechanisms present in P. atrosepticum.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Pectobacterium , Solanum tuberosum , Groenlândia , Pectobacterium/genética , Doenças das Plantas
9.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063632

RESUMO

Temperature is one of the critical factors affecting gene expression in bacteria. Despite the general interest in the link between bacterial phenotypes and environmental temperature, little is known about temperature-dependent gene expression in plant pathogenic Pectobacterium atrosepticum, a causative agent of potato blackleg and tuber soft rot worldwide. In this study, twenty-nine P. atrosepticum SCRI1043 thermoregulated genes were identified using Tn5-based transposon mutagenesis coupled with an inducible promotorless gusA gene as a reporter. From the pool of 29 genes, 14 were up-regulated at 18 °C, whereas 15 other genes were up-regulated at 28 °C. Among the thermoregulated loci, genes involved in primary bacterial metabolism, membrane-related proteins, fitness-corresponding factors, and several hypothetical proteins were found. The Tn5 mutants were tested for their pathogenicity in planta and for features that are likely to remain important for the pathogen to succeed in the (plant) environment. Five Tn5 mutants expressed visible phenotypes differentiating these mutants from the phenotype of the SCRI1043 wild-type strain. The gene disruptions in the Tn5 transposon mutants caused alterations in bacterial generation time, ability to form a biofilm, production of lipopolysaccharides, and virulence on potato tuber slices. The consequences of environmental temperature on the ability of P. atrosepticum to cause disease symptoms in potato are discussed.


Assuntos
Elementos de DNA Transponíveis/genética , Pectobacterium/genética , Doenças das Plantas/genética , Solanum tuberosum/genética , Resistência à Doença/genética , Regulação Bacteriana da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Pectinas/química , Pectinas/genética , Pectobacterium/patogenicidade , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Temperatura , Transposases/genética
10.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298965

RESUMO

Pectobacterium parmentieri is a Gram-negative plant-pathogenic bacterium able to infect potato (Solanum tuberosum L.). Little is known about lytic bacteriophages infecting P. parmentieri and how phage-resistance influences the environmental fitness and virulence of this species. A lytic phage vB_Ppp_A38 (ϕA38) has been previously isolated and characterized as a potential biological control agent for the management of P. parmentieri. In this study, seven P. parmentieri SCC 3193 Tn5 mutants were identified that exhibited resistance to infection caused by vB_Ppp_A38 (ϕA38). The genes disrupted in these seven mutants encoded proteins involved in the assembly of O-antigen, sugar metabolism, and the production of bacterial capsule exopolysaccharides. The potential of A38-resistant P. parmentieri mutants for plant colonization and pathogenicity as well as other phenotypes expected to contribute to the ecological fitness of P. parmentieri, including growth rate, use of carbon and nitrogen sources, production of pectinolytic enzymes, proteases, cellulases, and siderophores, swimming and swarming motility, presence of capsule and flagella as well as the ability to form biofilm were assessed. Compared to the wild-type P. parmentieri strain, all phage-resistant mutants exhibited a reduced ability to colonize and to cause symptoms in growing potato (S. tuberosum L.) plants. The implications of bacteriophage resistance on the ecological fitness of P. parmentieri are discussed.


Assuntos
Bacteriófagos , Regulação Bacteriana da Expressão Gênica , Mutação , Pectobacterium , Doenças das Plantas/microbiologia , Polissacarídeos Bacterianos , Solanum tuberosum/microbiologia , Fatores de Virulência/biossíntese , Bacteriófagos/genética , Bacteriófagos/metabolismo , Pectobacterium/genética , Pectobacterium/metabolismo , Pectobacterium/patogenicidade , Pectobacterium/virologia , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Fatores de Virulência/genética
11.
Appl Microbiol Biotechnol ; 104(10): 4547-4561, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32215712

RESUMO

"The Great Five" (GF) is an artificial bacterial consortium developed to protect potato tubers from soft rot caused by Pectobacterium spp. and Dickeya spp. To investigate the commercialization potential of the GF, we developed liquid and powder formulations of the consortium and of each of the comprising strains (Serratia plymuthica strain A294, Enterobacter amnigenus strain A167, Rahnella aquatilis strain H145, Serratia rubidaea strain H440, and S. rubidaea strain H469). To form powders, the cells were lyophilized using a newly developed lyoprotectant: Reagent PS. The shelf life of the formulations stored at 8 and 22 °C was monitored for a period of 12 months. The longest shelf life was obtained for formulations stored at 8 °C; however, the viability of all formulations was negatively affected at 22 °C. For the consortium, a 2.5 log10 cfu (colony forming units) drop in cell number was recorded for the liquid formulation after 6 months, while in case of powders, the drop remained below 1 log10 cfu following 12 months. The ability of the powder formulations to preserve biocontrol activity of the consortium was tested on potato tubers treated with the formulations and a mixture of the soft rot pathogens. The inoculated tubers were stored for 6 months at 8 °C to mimic commercial storage conditions. Soft rot severity and incidence on potato tubers treated with formulations were significantly reduced (62-75% and 48-61%, respectively) in comparison to positive control with pathogens alone. The potential use of the newly developed formulations of "The Great Five" for the biocontrol of soft rot is discussed. KEY POINTS : • An innovative reagent to protect bacterial cells during lyophilization was developed. • Powder formulations of "The Great Five" prolonged its shelf life. • The powder-formulated "The Great Five" was active against soft rot bacteria on potato tubers.


Assuntos
Antibiose , Dickeya/fisiologia , Armazenamento de Alimentos/métodos , Consórcios Microbianos , Pectobacterium/fisiologia , Solanum tuberosum/microbiologia , Agentes de Controle Biológico , Contagem de Colônia Microbiana , Dickeya/patogenicidade , Pectobacterium/patogenicidade
12.
Plant Dis ; 103(6): 1374-1382, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30908126

RESUMO

Possibilities to protect potato tubers from rotting caused by Soft Rot Pectobacteriaceae (SRP) under disease favoring conditions were investigated using compatible mixtures of bacterial antagonists and tested with a newly developed stepwise efficacy-based screening protocol. Twenty-two bacterial antagonists were evaluated against a combination of five Pectobacterium and Dickeya strains representing species and subspecies most often associated with potato soft rot in Europe. To enable potential synergistic activity, the antagonists were initially tested against the combination of pathogens in 15 random mixtures containing up to 5 antagonists each. Three mixtures (M2, M4, and M14) out of 15 tested reduced tuber tissue maceration due to soft rot. The individual antagonists derived from M2, M4, and M14 mixtures were tested on potato slices and whole tuber injection assays. These five strains (S. plymuthica strain A294, E. amnigenus strain A167, R. aquatilis strain H145, S. rubidaea strain H440, and S. rubidaea strain H469) were combined to develop a tailored biological control mixture against potato soft rot. The new mixture, designated the Great Five (GF), was tested on seed potato tubers vacuum infiltrated with antagonists and subsequently with the combination of five SRP pathogens. In these experiments, the GF mixture provided stable protection of inoculated potato tubers, reducing soft rot by 46% (P = 0.0016) under high disease pressure conditions. The A294, A167, H145, H440, and H469 antagonists were characterized for features important for viable commercial applications including growth at different temperatures, resistance to antibiotics, and potential toxicity toward Caenorhabditis elegans. The implications for control of soft rot caused by SRP with the use of the GF mixture of antagonists are discussed.


Assuntos
Fenômenos Fisiológicos Bacterianos , Gammaproteobacteria , Interações Microbianas , Doenças das Plantas , Tubérculos , Solanum tuberosum , Agentes de Controle Biológico , Europa (Continente) , Gammaproteobacteria/fisiologia , Pectobacterium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Tubérculos/microbiologia , Solanum tuberosum/microbiologia
13.
Plant Dis ; 102(3): 619-627, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673477

RESUMO

Colonization of Solanum dulcamara (bittersweet nightshade) plants by a GFP-tagged Dickeya solani type strain IPO2222 (IPO2254) was investigated by selective plating and epifluorescence stereomicroscopy (ESM), using in vitro plants and plants grown in compost soil. Replicated experiments were carried out in a growth chamber and the progress of infection and disease symptoms on tissue of the cultured plants, following leaf- and stem-base inoculations with bacteria, was evaluated. Microscopy observations were confirmed by spread-plating dilutions of plant extracts onto agar medium directly after the harvest. In experiments where the stem base of in vitro plants inoculated with a range of inocula of D. solani (104 to 108 colony forming units [cfu] ml-1) was examined at 14 days post infection (dpi), blackleg-like symptoms developed in more than 80% plants together with a reduction of the plant fitness (disease symptoms, weight, height, and appearance). In leaf-inoculated plants at 14 dpi, 15% of the plants exhibited severe blackleg-like symptoms. In detached S. dulcamara leaf assays, IPO2254 survived on the adaxial surface for 14 days at populations of 106 cfu per leaf. Thirty days after stem inoculation of plants grown in compost soil in pots, up to 104 cfu g-1 of GFP-tagged D. solani were found inside the stems. D. solani were detected inside the vascular tissue (xylem vessels) of stems, in the pith tissue in roots, and on the internal surface of the stem hollow. The implications of S. dulcamara infection by D. solani for the long-distance dispersal of the bacterial inoculum are discussed.


Assuntos
Enterobacteriaceae/fisiologia , Doenças das Plantas/microbiologia , Solanum/microbiologia , Enterobacteriaceae/crescimento & desenvolvimento , Proteínas de Fluorescência Verde , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Xilema/microbiologia
15.
Arch Virol ; 159(11): 3153-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25000903

RESUMO

Little is known about lytic bacteriophages infecting plant-pathogenic Dickeya spp. These bacteria cause economically significant losses in arable crops and ornamental plant production worldwide. At present, there is no effective control of diseases caused by Dickeya spp. A novel bacteriophage, ϕD5, belonging to the family Myoviridae, order Caudovirales, that could be used to control these bacteria was isolated previously. This report provides information on its characterization. The ϕD5 genome consists of 155,346-bp-length double-stranded DNA with a GC content of 49.7 % and is predicted to have 196 open reading frames (ORFs) with an average length of 711 nucleotides each. The ORFs were classified into functional groups, including phage structure, packaging, DNA metabolism, regulation, and additional functions. The phage lifestyle predicted from PHACTS indicated that ϕD5 may be a lytic phage and therefore can efficiently kill plant-pathogenic Dickeya spp.


Assuntos
Bacteriófagos/genética , Enterobacteriaceae/virologia , Genoma Viral , Especificidade de Hospedeiro , Myoviridae/genética , Myoviridae/isolamento & purificação , Doenças das Plantas/microbiologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Sequência de Bases , Enterobacteriaceae/fisiologia , Dados de Sequência Molecular , Myoviridae/classificação , Fases de Leitura Aberta , Filogenia
16.
Front Microbiol ; 14: 1307349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098664

RESUMO

Tailocins are nanomolecular machines with bactericidal activity. They are produced by bacteria to contribute to fitness in mixed communities, and hence, they play a critical role in their ecology in a variety of habitats. Here, we characterized the new tailocin produced by Dickeya dadantii strain 3937, a well-characterized member of plant pathogenic Soft Rot Pectobacteriaceae (SRP). Tailocins induced in D. dadantii were ca. 166 nm long tubes surrounded by contractive sheaths with baseplates having tail fibers at one end. A 22-kb genomic cluster involved in their synthesis and having high homology to the cluster coding for the tail of the Peduovirus P2 was identified. The D. dadantii tailocins, termed dickeyocins P2D1 (phage P2-like dickeyocin 1), were resistant to inactivation by pH (3.5-12), temperature (4-50°C), and elevated osmolarity (NaCl concentration: 0.01-1 M). P2D1 could kill a variety of different Dickeya spp. but not any strain of Pectobacterium spp. tested and were not toxic to Caenorhabditis elegans.

17.
Sci Rep ; 13(1): 7534, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160956

RESUMO

Lytic bacteriophages able to infect and kill Dickeya spp. can be readily isolated from virtually all Dickeya spp. containing environments, yet little is known about the selective pressure those viruses exert on their hosts. Two spontaneous D. solani IPO 2222 mutants (0.8% of all obtained mutants), DsR34 and DsR207, resistant to infection caused by lytic phage vB_Dsol_D5 (ΦD5) were identified in this study that expressed a reduced ability to macerate potato tuber tissues compared to the wild-type, phage-susceptible D. solani IPO 2222 strain. Genome sequencing revealed that genes encoding: secretion protein HlyD (in mutant DsR34) and elongation factor Tu (EF-Tu) (in mutant DsR207) were altered in these strains. These mutations impacted the DsR34 and DsR207 proteomes. Features essential for the ecological success of these mutants in a plant environment, including their ability to use various carbon and nitrogen sources, production of plant cell wall degrading enzymes, ability to form biofilms, siderophore production, swimming and swarming motility and virulence in planta were assessed. Compared to the wild-type strain, D. solani IPO 2222, mutants DsR34 and DsR207 had a reduced ability to macerate chicory leaves and to colonize and cause symptoms in growing potato plants.


Assuntos
Bacteriófagos , Virulência/genética , Enterobacteriaceae , Mutação , Natação
18.
J Bacteriol ; 194(24): 6999-7000, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23209245

RESUMO

Serratia plymuthica A30 is a Gram-negative bacterium expressing antagonistic activity toward blackleg- and soft rot-causing Dickeya sp. biovar 3 ("Dickeya solani"). Here, we present the draft genome sequence of strain A30, which has been isolated from rotten potato tuber tissue.


Assuntos
Genoma Bacteriano , Tubérculos/microbiologia , Serratia/genética , Solanum tuberosum/microbiologia , Composição de Bases , Agentes de Controle Biológico , DNA Bacteriano/genética , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , RNA Bacteriano/genética , Análise de Sequência de DNA
19.
Sci Rep ; 12(1): 10725, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750797

RESUMO

Resistance to bacteriophage infections protects bacteria in phage-replete environments, enabling them to survive and multiply in the presence of their viral predators. However, such resistance may confer costs for strains, reducing their ecological fitness as expressed as competitiveness for resources or virulence or both. There is limited knowledge about such costs paid by phage-resistant plant pathogenic bacteria in their natural habitats. This study analyzed the costs of phage resistance paid by the phytopathogenic pectinolytic bacterium Dickeya solani both in vitro and in potato (Solanum tuberosum L.) plants. Thirteen Tn5 mutants of D. solani IPO 2222 were identified that exhibited resistance to infection by lytic bacteriophage vB_Dsol_D5 (ΦD5). The genes disrupted in these mutants encoded proteins involved in the synthesis of bacterial envelope components (viz. LPS, EPS and capsule). Although phage resistance did not affect most of the phenotypes of ΦD5-resistant D. solani such as growth rate, production of effectors, swimming and swarming motility, use of various carbon and nitrogen sources and biofilm formation evaluated in vitro, all phage resistant mutants were significantly compromised in their ability to survive on leaf surfaces as well as to grow within and cause disease symptoms in potato plants.


Assuntos
Bacteriófagos , Solanum tuberosum , Bacteriófagos/genética , Dickeya , Enterobacteriaceae/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia
20.
Microorganisms ; 9(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535657

RESUMO

Promoter-probe vectors carrying fluorescent protein-reporter genes are powerful tools used to study microbial ecology, epidemiology, and etiology. In addition, they provide direct visual evidence of molecular interactions related to cell physiology and metabolism. Knowledge and advances carried out thanks to the construction of soft-rot Pectobacteriaceae biosensors, often inoculated in potato Solanum tuberosum, are discussed in this review. Under epifluorescence and confocal laser scanning microscopies, Dickeya and Pectobacterium-tagged strains managed to monitor in situ bacterial viability, microcolony and biofilm formation, and colonization of infected plant organs, as well as disease symptoms, such as cell-wall lysis and their suppression by biocontrol antagonists. The use of dual-colored reporters encoding the first fluorophore expressed from a constitutive promoter as a cell tag, while a second was used as a regulator-based reporter system, was also used to simultaneously visualize bacterial spread and activity. This revealed the chronology of events leading to tuber maceration and quorum-sensing communication, in addition to the disruption of the latter by biocontrol agents. The promising potential of these fluorescent biosensors should make it possible to apprehend other activities, such as subcellular localization of key proteins involved in bacterial virulence in planta, in the near future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa