RESUMO
The atomic redistribution processes occurring in multiparticle nanostructures are hardly understood. To obtain a more detailed insight, we applied high-resolution microscopic, diffraction and spectroscopic characterization techniques to investigate the fine structure and elemental distribution of various bimetallic aerogels with 1:1 compositions, prepared by self-assembly of single monometallic nanoparticles. The system Au-Ag exhibited a complete alloy formation, whereas Pt-Pd aerogels formed a Pd-based network with embedded Pt particles. The assembly of Au and Pd nanoparticles resulted in a Pd-shell formation around the Au particles. This work confirms that bimetallic aerogels are subject to reorganization processes during their gel formation.
RESUMO
We present a new approach to study the three-dimensional compositional and structural evolution of metal alloys during heat treatments such as commonly used for improving overall material properties. It relies on in situ heating in a high-resolution scanning transmission electron microscope (STEM). The approach is demonstrated using a commercial Al alloy AA2024 at 100-240 °C, showing in unparalleled detail where and how precipitates nucleate, grow, or dissolve. The observed size evolution of individual precipitates enables a separation between nucleation and growth phenomena, necessary for the development of refined growth models. We conclude that the in situ heating STEM approach opens a route to a much faster determination of the interplay between local compositions, heat treatments, microstructure, and mechanical properties of new alloys.
RESUMO
The main strengthening mechanism for Inconel 718 (IN718), a Ni-based superalloy, is precipitation hardening by γ' and γⳠparticles. It is thus essential, for good alloy performance, that precipitates with the desired chemical composition have adequate size and dispersion. The distribution of the γ' and γⳠphases and their chemical composition were investigated in the nickel-based Inconel 718 superalloy by taking advantage of the new capabilities of scanning transmission electron microscopy and energy-dispersive X-ray spectrometry using a windowless multiple detector, a high-brightness Schottky electron gun, and a spherical aberration corrector in the illumination probe optics. A small routine was developed to deconvolute the respective compositions of γ' and γⳠnanoprecipitates embedded in the γ matrix. Keeping the electron probe current low enough-a few hundred pA-prevented excessive irradiation damage during the acquisition of element maps and brought their spatial resolution down to the atomic column level to track their element compositions. The present results agree with and complement atomic probe tomography observations and Thermo-Calc predictions from the literature. The presence of an Al enrichment at the γ'/γⳠinterface-which may control the γⳠphase coarsening-is observed in the last row of Al-Nb-Ti columns along this interface. In addition, a few columns with similar composition changes are found randomly distributed in the γ' phase.
RESUMO
The ATI 718Plus® is a creep-resistant nickel-based superalloy exhibiting high strength and excellent oxidation resistance in high temperatures. The present study is focused on multiscale 2D and 3D characterization (morphological and chemical) of the scale and the layer beneath formed on the ATI 718Plus superalloy during oxidation at 850 °C up to 4000 h in dry and wet air. The oxidized samples were characterized using various microscopic methods (SEM, TEM and STEM), energy-dispersive X-ray spectroscopy and electron diffraction. The 3D visualization of the microstructural features was achieved by means of FIB-SEM tomography. When oxidized in dry air, the ATI 718Plus develops a protective, dense Cr2O3 scale with a dual-layered structure. The outer Cr2O3 layer is composed of coarser grains with a columnar shape, while the inner one features fine, equiaxed grains. The Cr2O3 scale formed in wet air is single-layered and features very fine grains. The article discusses the difference between the structure, chemistry and three-dimensional phase distribution of the oxide scales and near-surface areas developed in the two environments. Electron microscopy/spectroscopy findings combined with the three-dimensional reconstruction of the microstructure provide original insight into the role of the oxidation environment on the structure of the ATI 718Plus at the nanoscale.
RESUMO
Electrospun nanofibers have ability to boost cell proliferation in tissue engineered scaffolds as their structure remind cells extra cellular matrix of the native tissue. The complex architecture and network of nanofibrous scaffolds requires advanced characterization methods to understand interrelationship between cells and nanofibers. In our study, we used complementary 2D and 3D analyses of electrospun polylactide-co-glycolide acid (PLGA) scaffolds in two configurations: aligned and randomly oriented nanofibers. Sizes of pores and fibers, pores shapes and porosity, before and after cell culture, were verified by imaging with scanning electron microscopy (SEM) and combination of focus ion beam (FIB) and SEM to obtain 3D reconstructions of samples. Using FIB-SEM tomography for 3D reconstructions and 2D analyses, a unique set of data allowing understanding cell proliferation mechanism into the electrospun scaffolds, was delivered. Critically, the proliferation of cells into nanofibers network depends mainly on the pore shape and pores interconnections, which allow deep integration between cells and nanofibers. The proliferation of cells inside the network of fibers is much limited for aligned fibers comparing to randomly oriented fibers. For random fibers cells have easier way to integrate inside the scaffold as the circularity of pores and their sizes are larger than for aligned scaffolds. The complex architecture of electrospun scaffolds requires appropriate, for tissue engineering needs, cell seeding and culture methods, to maximize tissue growth in vitro environment.
Assuntos
Microscopia Eletrônica de Varredura/métodos , Nanofibras/química , Nanoestruturas/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Camundongos , Nanofibras/ultraestrutura , Nanoestruturas/ultraestruturaRESUMO
To address one of the serious problems associated with permanent implants, namely bacterial infections, novel organic/inorganic coatings containing zinc oxide nanoparticles (nZnO) are proposed. Coatings were obtained by electrophoretic deposition (EPD) on stainless steel 316L. Different deposition conditions namely: deposition times in the range 60-300s and applied voltage in the range 5-30V as well as developing a layered coating approach were studied. Antibacterial tests against gram-positive Staphylococcus aureus and gram-negative Salmonella enteric bacteria confirmed the activity of nZnO to prevent bacterial growth. Coatings composition and morphology were analyzed by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Moreover, the corrosion resistance was analyzed by evaluation of the polarization curves in DMEM at 37°C, and it was found that coatings containing nZnO increased the corrosion resistance compared to the bare substrate. Considering all results, the newly developed coatings represent a suitable alternative for the surface modification of metallic implants.
Assuntos
Nanopartículas Metálicas , Antibacterianos , Quitosana , Materiais Revestidos Biocompatíveis , Durapatita , Staphylococcus aureus , Óxido de ZincoRESUMO
A combinatorial approach is applied to rapidly deposit and screen Ag-Al thin films to evaluate the mechanical, tribological, and electrical properties as a function of chemical composition. Ag-Al thin films with large continuous composition gradients (6-60 atom % Al) were deposited by a custom-designed combinatorial magnetron sputtering system. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and four-point electrical resistance screening were employed to characterize the chemical composition, structure, and physical properties of the films in a time-efficient way. For low Al contents (<13 atom %), a highly (111)-textured fcc phase was formed. At higher Al contents, a (002)-textured hcp solid solution phase was formed followed by a fcc phase in the most Al-rich regions. No indication of a µ phase was observed. The Ag-Al films with fcc-Ag matrix is prone to adhesive material transfer leading to a high friction coefficient (>1) and adhesive wear, similar to the behavior of pure Ag. In contrast, the hexagonal solid solution phase (from ca. 15 atom %Al) exhibited dramatically reduced friction coefficients (about 15% of that of the fcc phase) and dramatically reduced adhesive wear when tested against the pure Ag counter surface. The increase in contact resistance of the Ag-Al films is limited to only 50% higher than a pure Ag reference sample at the low friction and low wear region (19-27 atom %). This suggests that a hcp Ag-Al alloy can have a potential use in sliding electrical contact applications and in the future will replace pure Ag in specific electromechanical applications.
RESUMO
Zinc (Zn)-containing materials have osteogenic and antibacterial activities while bioactive glass nanoparticles (BGN) show bone-bonding ability, as well as osteoconductive and osteoinductive properties. Zn-containing BGN are therefore considered to be promising materials for various biomedical applications, particularly in bone regeneration. In this study, we report a convenient method to prepare Zn-containing BGN by coating ZnO quantum dots (QDs) on BGN via electrostatic interactions. The synthesized ZnO-BGN nanocomposite particles are spherical and highly dispersed, and exhibit a unique fluorescence behavior under UV excitation, emitting three wavelengths in the violet, blue and green range. ZnO-BGN showed apatite-forming ability upon immersion in simulated body fluid, but their apatite formation was delayed compared to BGN. Interestingly, ZnO-BGN showed a rapid release of Zn ions at pH 4 but a far slower release at pH 7.4. ZnO-BGN also exhibited antibacterial effects on both Gram-positive and Gram-negative bacteria at the concentrations of 1, 0.1, and 0.01 mg mL-1. Higher concentrations could lead to stronger antibacterial effects. The LDH and live/dead assays indicated that ZnO-BGN had no significant cytotoxicity towards human mesenchymal stem cells (hMSC) at concentration of 0.1 and 0.01 mg mL-1, but ZnO-BGN inhibited the relative proliferation of hMSC compared to BGN and the control according to the MTT assay. Notably ZnO-BGN improved the osteogenic differentiation of hMSC as indicated by the determination of the alkaline phosphatase activity. In conclusion, coating quantum dots on BGN is a promising strategy to produce Zn-containing BGN. The synthesized ZnO-BGN are potential materials for bone regeneration, considering their apatite-forming ability, unique ion-release behavior, effective antibacterial activity, non-cytotoxicity, and osteogenic potential.