Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751978

RESUMO

Silver nanoparticles were produced with AgF as the starting Ag(I) salt, with pectin as the reductant and protecting agent. While the obtained nanoparticles (pAgNP-F) have the same dimensional and physicochemical properties as those already described by us and obtained from AgNO3 and pectin (pAgNP-N), the silver nanoparticles from AgF display an increased antibacterial activity against E. coli PHL628 and Staphylococcus epidermidis RP62A (S. epidermidis RP62A), both as planktonic strains and as their biofilms with respect to pAgNP-N. In particular, a comparison of the antimicrobial and antibiofilm action of pAgNP-F has been carried out with pAgNP-N, pAgNP-N and added NaF, pure AgNO3, pure AgF, AgNO3 and added NaF and pure NaNO3 and NaF salts. By also measuring the concentration of the Ag+ cation released by pAgNP-F and pAgNP-N, we were able to unravel the separate contributions of each potential antibacterial agent, observing an evident synergy between p-AgNP and the F- anion: the F- anion increases the antibacterial power of the p-AgNP solutions even when F- is just 10 µM, a concentration at which F- alone (i.e., as its Na+ salt) is completely ineffective.


Assuntos
Antibacterianos/química , Biofilmes/efeitos dos fármacos , Fluoretos/química , Nanopartículas Metálicas/química , Compostos de Prata/química , Prata/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Plâncton/efeitos dos fármacos , Plâncton/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia
2.
J Biomed Mater Res A ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884299

RESUMO

Despite the significant recent advances in manufacturing materials supporting advanced dental therapies, peri-implantitis still represents a severe complication in dental implantology. Herein, a sol-gel process is proposed to easily deposit antibacterial zirconia coatings onto bulk zirconia, material, which is becoming very popular for the manufacturing of abutments. The coatings' physicochemical properties were analyzed through x-ray diffraction and scanning electron microscopy-energy-dispersive x-ray spectroscopy investigations, while their stability and wettability were assessed by microscratch testing and static contact angle measurements. Uniform gallium-doped tetragonal zirconia coatings were obtained, featuring optimal mechanical stability and a hydrophilic behavior. The biological investigations pointed out that gallium-doped zirconia coatings: (i) displayed full cytocompatibility toward human gingival fibroblasts; (ii) exhibited significant antimicrobial activity against the Aggregatibacter actinomycetemcomitans pathogen; (iii) were able to preserve the commensal Streptococcus salivarius. Furthermore, the proteomic analyses revealed that the presence of Ga did not impair the normal oral microbiota. Still, interestingly, it decreased by 17% the presence of Fusobacterium nucleatum, a gram-negative, strictly anaerobic bacteria that is naturally present in the gastrointestinal tract. Therefore, this work can provide a valuable starting point for the development of coatings aimed at easily improving zirconia dental implants' performance.

3.
Gels ; 8(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35621596

RESUMO

Infection is a severe complication in chronic wounds, often leading to morbidity or mortality. Current treatments rely on dressings, which frequently contain silver as a broad-spectrum antibacterial agent, although improper dosing can result in severe side effects. This work proposes a novel methylcellulose (MC)-based hydrogel designed for the topical release of silver nanoparticles (AgNPs) via an intelligent mechanism activated by the pH variations in infected wounds. A preliminary optimization of the physicochemical and rheological properties of MC hydrogels allowed defining the optimal processing conditions in terms of crosslinker (citric acid) concentration, crosslinking time, and temperature. MC/AgNPs nanocomposite hydrogels were obtained via an in situ synthesis process, exploiting MC both as a capping and reducing agent. AgNPs with a 12.2 ± 2.8 nm diameter were obtained. MC hydrogels showed a dependence of the swelling and degradation behavior on both pH and temperature and a noteworthy pH-triggered release of AgNPs (release ~10 times higher at pH 12 than pH 4). 1H-NMR analysis revealed the role of alkaline hydrolysis of the ester bonds (i.e., crosslinks) in governing the pH-responsive behavior. Overall, MC/AgNPs hydrogels represent an innovative platform for the pH-triggered release of AgNPs in an alkaline milieu.

4.
Biomed Mater ; 16(4)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33857927

RESUMO

Cytocompatible bioactive surface treatments conferring antibacterial properties to osseointegrated dental implants are highly requested to prevent bacteria-related peri-implantitis. Here we focus on a newly designed family of mesoporous coatings based on zirconia (ZrO2) microstructure doped with gallium (Ga), exploiting its antibacterial and pro-osseo-integrative properties. The ZrO2films were obtained via sol-gel synthesis route using Pluronic F127 as templating agent, while Ga doping was gained by introducing gallium nitrate hydrate. Chemical characterization by means of x-ray photoelectron spectroscopy and glow discharge optical emission spectroscopy confirmed the effective incorporation of Ga. Then, coatings morphological and structural analysis were carried out by transmission electron microscopy and selected area electron diffraction unveiling an effective stabilization of both the mesoporous structure and the tetragonal ZrO2phase. Specimens' cytocompatibility was confirmed towards gingival fibroblast and osteoblasts progenitors cultivated directly onto the coatings showing comparable metabolic activity and morphology in respect to controls cultivated on polystyrene. The presence of Ga significantly reduced the metabolic activity of the adhered oral pathogensPorphyromonas gingivalisandAggregatibacter actinomycetemcomitansin comparison to untreated bulk zirconia (p< 0.05); on the opposite, Ga ions did not significantly reduce the metabolism of the oral commensalStreptococcus salivarius(p> 0.05) thus suggesting for a selective anti-pathogens activity. Finally, the coatings' ability to preserve cells from bacterial infection was proved in a co-culture method where cells and bacteria were cultivated in the same environment: the presence of Ga determined a significant reduction of the bacteria viability while allowing at the same time for cells proliferation. In conclusion, the here developed coatings not only demonstrated to satisfy the requested antibacterial and cytocompatibility properties, but also being promising candidates for the improvement of implantable devices in the field of implant dentistry.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Implantes Dentários , Zircônio , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Técnicas de Cocultura , Fibroblastos/citologia , Gálio , Gengiva/citologia , Humanos , Osteoblastos/citologia , Propriedades de Superfície , Zircônio/química , Zircônio/farmacologia
5.
Talanta ; 216: 120936, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32456888

RESUMO

Seed-growth synthesis is a common strategy to prepare silver nanoplates, whose peculiar plasmonic features can be exploited for surface enhanced Raman scattering (SERS) applications. Here we describe the fabrication and characterization of SERS chips using a peculiar in situ seed growth method, yielding a dense layer of nano-objects directly on a glass slide. In this way, geometric features (i.e. shape and dimensions) of the nano-objects can be tuned by controlling the growth time, obtaining a high concentration of hot spots on the surface. In particular, the SERS response of four kinds of chips were investigated to define the best SERS configuration in terms of size of the silver nano-objects, excitation wavelength and homogeneity of the SERS response. Silver nano-plates with a seeded growth time of 60 min demonstrated remarkable results both in terms of plasmonic enhancement, with an enhancement factor (EF) of 2 × 105 using a 532 nm laser excitation, and good homogeneity of the SERS response with intra- and inter-maps RSD of 10% and 5%, respectively. In order to demonstrate application of these chips for real sample analysis, an analytical procedure for the detection of a model pesticide, i.e. thiram fungicide, was developed and applied to its detection on green apples peels. SERS measurements on 60 min seeded growth silver nano-plates chip coupled with a multivariate PLS approach demonstrated high accuracy and repeatability for thiram detection in food matrix within the European law limits.


Assuntos
Contaminação de Alimentos/análise , Fungicidas Industriais/análise , Nanopartículas Metálicas/química , Sementes/crescimento & desenvolvimento , Prata/metabolismo , Tiram/análise , Calibragem , Vidro/química , Malus/química , Prata/química , Análise Espectral Raman , Propriedades de Superfície
6.
Nanomaterials (Basel) ; 10(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085548

RESUMO

We developed an easy and reproducible synthetic method to graft a monolayer of copper sulfide nanoparticles (CuS NP) on glass and exploited their particular antibacterial features. Samples were fully characterized showing a good stability, a neat photo-thermal effect when irradiated in the Near InfraRed (NIR) region (in the so called "biological window"), and the ability to release controlled quantities of copper in water. The desired antibacterial activity is thus based on two different mechanisms: (i) slow and sustained copper release from CuS NP-glass samples, (ii) local temperature increase caused by a photo-thermal effect under NIR laser irradiation of CuS NP-glass samples. This behavior allows promising in vivo applications to be foreseen, ensuring a "static" antibacterial protection tailored to fight bacterial adhesion in the critical timescale of possible infection and biofilm formation. This can be reinforced, when needed, by a photo-thermal action switchable on demand by an NIR light.

7.
Beilstein J Nanotechnol ; 9: 2040-2048, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116694

RESUMO

The unique photothermal properties of non-spherical gold nanoparticles under near-infrared (NIR) irradiation find broad application in nanotechnology and nanomedicine. The combination of their plasmonic features with widely used biocompatible poly(vinyl alcohol) (PVA) films can lead to novel hybrid polymeric materials with tunable photothermal properties and a wide range of applications. In this study, thin PVA films containing highly photothermally efficient gold nanostars (GNSs) were fabricated and their properties were studied. The resulting films displayed good mechanical properties and a pronounced photothermal effect under NIR irradiation. The local photothermal effect triggered by NIR irradiation of the PVA-GNS films is highly efficient at killing bacteria, therefore providing an opportunity to develop new types of protective antibacterial films and coatings.

8.
Int J Pharm ; 519(1-2): 113-124, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28093325

RESUMO

To overcome the low bioavailability of siRNA (small interfering RNA) and to improve their transfection efficiency, the use of non-viral delivery carriers is today a feasible approach to transform the discovery of these incredibly potent and versatile drugs into clinical practice. Polymer-modified gold nanoconstructs (AuNCs) are currently viewed as efficient and safe intracellular delivery carriers for siRNA, as they have the possibility to conjugate the ability to stably entrap and deliver siRNAs inside cells with the advantages of gold nanoparticles, which can act as theranostic agents and radiotherapy enhancers through laser-induced hyperthermia. In this study, AuNCs were prepared by coating Gold Nano Stars (GNS) with suitable functionalised polymers, to give new insight on the choice of the coating in order to obtain colloidal stability, satisfying in vitro transfection behaviour and reliability in terms of homogeneous results upon GNS type changing. For this goal, GNS synthesized with three different sizes and shapes were coated with two different polymers: i) α-mercapto-ω-amino polyethylene glycol 3000Da (SH-PEG3000-NH2), a hydrophilic linear polymer; ii) PHEA-PEG2000-EDA-LA (PPE-LA), an amphiphilic hydroxyethylaspartamide copolymer containing a PEG moiety. Both polymers contain SH or SS groups for anchoring on gold surface and NH2 groups, which can be protonated in order to obtain a positive surface for successive siRNA layering. The effect of the features of the coating polymers on siRNA layering, and the extent of intracellular uptake and luciferase gene silencing effect were evaluated for each of the obtained coated GNS. The results highlight that amphiphilic biocompatible polymers with multi-grafting function are more suitable for ensuring the colloidal stability and the effectiveness of these colloidal systems, compared to the coating with linear PEG.


Assuntos
Neoplasias da Mama/terapia , Ouro/química , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Disponibilidade Biológica , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Inativação Gênica/efeitos dos fármacos , Coloide de Ouro/administração & dosagem , Coloide de Ouro/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Tamanho da Partícula , Polietilenoglicóis/química , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Transfecção/métodos
9.
Nanomaterials (Basel) ; 7(1)2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28336841

RESUMO

A layer of silver nanoplates, specifically synthesized with the desired localized surface plasmon resonance (LSPR) features, was grafted on amino-functionalized bulk glass surfaces to impart a double antibacterial action: (i) the well-known, long-term antibacterial effect based on the release of Ag⁺; (ii) an "on demand" action which can be switched on by the use of photo-thermal properties of silver nano-objects. Irradiation of these samples with a laser having a wavelength falling into the so called "therapeutic window" of the near infrared region allows the reinforcement, in the timescale of minutes, of the classical antibacterial effect of silver nanoparticles. We demonstrate how using the two actions allows for almost complete elimination of the population of two bacterial strains of representative Gram-positive and Gram-negative bacteria.

10.
Biomaterials ; 35(6): 1779-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24315574

RESUMO

Biofilm production is the crucial pathogenic mechanism of the implant-associated infection and a primary target for new anti-infective strategies. Silver nanoparticles (AgNPs) are attracting interest for their multifaceted potential biomedical applications. As endowed with highest surface/mass ratio and potent antibacterial activity, they can profitably be applied as monolayers at biomaterial surfaces. Desirably, in order to minimize the risks of toxic effects from freely circulating detached nanoparticles, AgNPs should firmly be anchored to the modified biomaterial surfaces. Here we focus on a newly designed glass surface modified with AgNPs and on its antibiofilm properties. Link of a self-assembled monolayer of AgNPs to glass was obtained through preliminary amino-silanization of the glass followed by immersion in an AgNPs colloidal suspension. Static contact angle measure, AFM, TEM, UV-Vis spectroscopy, ICP atomic emission spectroscopy were used for characterization. Antibiofilm activity against the biofilm-producer Staphylococcus epidermidis RP62A was assayed by both CFU method and CLSM. Performances of AgNPs-glasses were: i) excellent stability in aqueous medium; ii) prolonged release and high local concentration of Ag(+) without any detaching of AgNPs; iii) strong antibiofilm activity against S. epidermidis RP62A. This AgNPs surface-modification can be applied to a large variety of biomaterials by simply depositing glass-like SiO2 films on their surfaces.


Assuntos
Vidro/química , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa