Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 212: 115395, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004347

RESUMO

A robust adaptive immune response is essential for combatting pathogens. In the wrong context such as due to genetic and environmental factors, however, the same mechanisms crucial for self-preservation can lead to a loss of self-tolerance. Resulting autoimmunity manifests in the development of a host of organ-specific or systemic autoimmune diseases, hallmarked by aberrant immune responses and tissue damage. The prevalence of autoimmune diseases is on the rise, medical management of which focuses primarily on pharmacological immunosuppression that places patients at a risk of side effects, including opportunistic infections and tumorigenesis. Biomaterial-based drug delivery systems confer many opportunities to address challenges associated with conventional disease management. Hydrogels, in particular, can protect encapsulated cargo (drug or cell therapeutics) from the host environment, afford their presentation in a controlled manner, and can be tailored to respond to disease conditions or support treatment via multiplexed functionality. Moreover, localized delivery to affected sites by these approaches has the potential to concentrate drug action at the site, reduce off-target exposure, and enhance patient compliance by reducing the need for frequent administration. Despite their many benefits for the management of autoimmune disease, such biomaterial-based approaches focus largely on the downstream effects of hypersensitivity mechanisms and have a limited capacity to eradicate the disease. In contrast, direct targeting of mechanisms of hypersensitivity reactions uniquely enables prophylaxis or the arrest of disease progression by mitigating the basis of autoimmunity. One promising approach is to induce self-antigen-specific tolerance, which specifically subdues damaging autoreactivity while otherwise retaining the normal immune responses. In this review, we will discuss hydrogel-based systems for the treatment of autoimmune disease, with a focus on those that target hypersensitivity mechanisms head-on. As the field continues to advance, it will expand the range of therapeutic choices for people coping with autoimmune diseases, providing fresh prospects for better clinical outcomes and improved quality of life.


Assuntos
Doenças Autoimunes , Sistemas de Liberação de Medicamentos , Hidrogéis , Humanos , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Hidrogéis/administração & dosagem , Animais , Hipersensibilidade/imunologia , Hipersensibilidade/tratamento farmacológico
2.
ACS Biomater Sci Eng ; 10(3): 1577-1588, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38357739

RESUMO

Protein therapeutics represent a rapidly growing class of pharmaceutical agents that hold great promise for the treatment of various diseases such as cancer and autoimmune dysfunction. Conventional systemic delivery approaches, however, result in off-target drug exposure and a short therapeutic half-life, highlighting the need for more localized and controlled delivery. We have developed an affinity-based protein delivery system that uses guest-host complexation between ß-cyclodextrin (CD, host) and adamantane (Ad, guest) to enable sustained localized biomolecule presentation. Hydrogels were formed by the copolymerization of methacrylated CD and methacrylated dextran. Extrusion fragmentation of bulk hydrogels yielded shear-thinning and self-healing granular hydrogels (particle diameter = 32.4 ± 16.4 µm) suitable for minimally invasive delivery and with a high host capacity for the retention of guest-modified proteins. Bovine serum albumin (BSA) was controllably conjugated to Ad via EDC chemistry without affecting the affinity of the Ad moiety for CD (KD = 12.0 ± 1.81 µM; isothermal titration calorimetry). The avidity of Ad-BSA conjugates was directly tunable through the number of guest groups attached, resulting in a fourfold increase in the complex half-life (t1/2 = 5.07 ± 1.23 h, surface plasmon resonance) that enabled a fivefold reduction in protein release at 28 days. Furthermore, we demonstrated that the conjugation of Ad to immunomodulatory cytokines (IL-4, IL-10, and IFNγ) did not detrimentally affect cytokine bioactivity and enabled their sustained release. Our strategy of avidity-controlled delivery of protein-based therapeutics is a promising approach for the sustained local presentation of protein therapeutics and can be applied to numerous biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Hidrogéis/química
3.
Drug Deliv Transl Res ; 13(7): 1983-2014, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36763330

RESUMO

Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Materiais Biocompatíveis/uso terapêutico , Infarto do Miocárdio/terapia , Miocárdio , Miócitos Cardíacos , Inflamação/terapia
4.
Biomater Sci ; 10(24): 6951-6967, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36341688

RESUMO

Injectable hydrogels may be pre-formed through dynamic crosslinks, allowing for injection and subsequent retention in the tissue by shear-thinning and self-healing processes, respectively. These properties enable the site-specific delivery of encapsulated therapeutics; yet, the sustained release of small-molecule drugs and their cell-targeted delivery remains challenging due to their rapid diffusive release and non-specific cellular biodistribution. Herein, we develop an injectable hydrogel system composed of a macrophage-targeted nanoparticle (cyclodextrin nanoparticles, CDNPs) crosslinked by adamantane-modified hyaluronic acid (Ad-HA). The polymer-nanoparticle hydrogel uniquely leverages cyclodextrin's interaction with small molecule drugs to create a spatially discrete drug reservoir and with adamantane to yield dynamic, injectable hydrogels. Through an innovative two-step drug screening approach and examination of 45 immunomodulatory drugs with subsequent in-depth transcriptional profiling of both murine and human macrophages, we identify celastrol as a potent inhibitor of pro-inflammatory (M1-like) behavior that furthermore promotes a reparatory (M2-like) phenotype. Celastrol encapsulation within the polymer-nanoparticle hydrogels permitted shear-thinning injection and sustained release of drug-laden nanoparticles that targeted macrophages to modulate cell behavior for greater than two weeks in vitro. The modular hydrogel system is a promising approach to locally modulate cell-specific phenotype in a range of applications for immunoregenerative medicine.


Assuntos
Ciclodextrinas , Hidrogéis , Humanos , Camundongos , Animais , Preparações de Ação Retardada/farmacologia , Distribuição Tecidual , Macrófagos , Polímeros
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa