Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 130: 36-43, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29477479

RESUMO

Engineered nanomaterials (ENM) are widely used in commercial, domestic, and more recently biomedical applications. While the majority of exposures to ENM are unintentional, biomedical platforms are being evaluated for use in individualized and/or tissue-targeted therapies. Treatments are often avoided during prenatal periods to reduce adverse effects on the developing fetus. The placenta is central to maternal-fetal medicine. Perturbation of placental functions can limit transfer of necessary nutrients, alter production of hormones needed during pregnancy, or allow undesired passage of xenobiotics to the developing fetus. The development of therapeutics to target specific maternal, placental, or fetal tissues would be especially important to reduce or circumvent toxicities. Therefore, this review will discuss the potential use of ENM in perinatal medicine, the applicable physiochemical properties of ENM in therapeutic use, and current methodologies of ENM testing in perinatal medicine, and identify maternal, fetal, and offspring concerns associated with ENM exposure during gestation. As potential nanoparticle-based therapies continue to develop, so does the need for thorough consideration and evaluation for use in perinatal medicine.


Assuntos
Nanoestruturas/uso terapêutico , Assistência Perinatal , Animais , Feminino , Humanos , Gravidez
2.
Placenta ; 121: 99-108, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35305398

RESUMO

Epidemiological studies have associated ambient engineered nanomaterials or ultrafine particulate matter (PM0.1), collectively referred to as nanoparticles (NPs), with adverse pregnancy outcomes including miscarriage, preterm labor, and fetal growth restriction. Evidence from non-pregnant models demonstrate that NPs can cross the lung air-blood barrier and circulate systemically. Therefore, inhalation of NPs during pregnancy leading to fetoplacental exposure has garnered attention. The purpose of this study was to evaluate the distribution of inhaled titanium dioxide nanoparticles (nano-TiO2) from the maternal lung to maternal and fetal systemic tissues. Pregnant Sprague Dawley rats were administered whole-body exposure to filtered air or of nano-TiO2 aerosols (9.96 ± 0.06 mg/m3) between gestational day (GD) 4 and 19. On GD 20 maternal, placental, and fetal tissues were harvested then digested for ICP-MS analysis to measure concentrations of titanium (Ti). TEM was used to visualize particle internalization by the placental syncytium. The results demonstrate the extrapulmonary distribution of Ti to various maternal organs during pregnancy. Our study found Ti accumulation in the decidua/junctional and labyrinth zones of placentas embedded in all sections of uterine horns. Further, NPs deposited in the placenta, identified by TEM, were found intracellularly within nuclear, endoplasmic reticulum, and vesicle organelles. This study identified the systemic distribution and placental accumulation of Ti after nano-TiO2 aerosol inhalation in a pregnancy model. These findings arouse concerns for poor air quality for pregnant women and possible contributions to adverse pregnancy outcomes.


Assuntos
Aborto Espontâneo , Nanopartículas , Animais , Feminino , Feto , Exposição Materna/efeitos adversos , Nanopartículas/efeitos adversos , Placenta , Gravidez , Ratos , Ratos Sprague-Dawley , Titânio/efeitos adversos
3.
Front Toxicol ; 32021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33997857

RESUMO

Fetal growth restriction (FGR) is a condition with several underlying etiologies including gestational disease (e.g., preeclampsia, gestational diabetes) and xenobiotic exposure (e.g., environmental contaminants, pharmaceuticals, recreational drugs). Rodent models allow study of FGR pathogenesis. However, given the multiparous rodent pregnancy, fetal growth variability within uterine horns may arise. To ascertain whether intrauterine position is a determinant of fetal growth, we redesigned fetal weight analysis to include litter size and maternal weight. Our FGR model is produced by exposing pregnant Sprague Dawley rats to aerosolized titanium dioxide nanoparticles at 9.44 ± 0.26 mg/m3 on gestational day (GD) 4, GD 12 or GD 17 or 9.53 ± 1.01 mg/m3 between GD 4-GD 19. In this study fetal weight data was reorganized by intrauterine location [i.e., right/left uterine horn and ovarian/middle/vaginal position] and normalized by maternal weight and number of feti per uterine horn. A significant difference in fetal weight in the middle location in controls (0.061g ± 0.001 vs. 0.055g ± 0.002), GD 4 (0.033g ± 0.003 vs. 0.049g ± 0.004), and GD 17 (0.047g ± 0.002 vs. 0.038g ± 0.002) exposed animals was identified. Additionally, GD 4 exposure produced significantly smaller feti in the right uterine horn at the ovarian end (0.052g ± 0.003 vs. 0.029g ± 0.003) and middle of the right uterine horn (0.060g ± 0.001 vs. 0.033g ± 0.003). GD 17 exposure produced significantly smaller feti in the left uterine horn middle location (0.055g ± 0.002 vs. 0.033 ± 0.002). Placental weights were unaffected, and placental efficiency was reduced in the right uterine horn middle location after GD 17 exposure (5.74g ± 0.16 vs. 5.09g ± 0.14). These findings identified: 1) differences in fetal weight of controls between the right and left horns in the middle position, and 2) differential effects of single whole-body pulmonary exposure to titanium dioxide nanoparticles on fetal weight by position and window of maternal exposure. In conclusion, these results indicate that consideration for intrauterine position, maternal weight, and number of feti per horn provides a more sensitive assessment of FGR from rodent reproductive and developmental studies.

4.
Biomed Pharmacother ; 117: 109148, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31347503

RESUMO

Development and implementation of products incorporating nanoparticles are occurring at a rapid pace. These particles are widely utilized in domestic, occupational, and biomedical applications. Currently, it is unclear if pregnant women will be able to take advantage of the potential biomedical nanoproducts out of concerns associated with placental transfer and fetal interactions. We recently developed an ex vivo rat placental perfusion technique to allow for the evaluation of xenobiotic transfer and placental physiological perturbations. In this study, a segment of the uterine horn and associated placenta was isolated from pregnant (gestational day 20) Sprague-Dawley rats and placed into a modified pressure myography vessel chamber. The proximal and distal ends of the maternal uterine artery and the vessels of the umbilical cord were cannulated, secured, and perfused with physiological salt solution (PSS). The proximal uterine artery and umbilical artery were pressurized at 80 mmHg and 50 mmHg, respectively, to allow countercurrent flow through the placenta. After equilibration, a single 900 µL bolus dose of 20 nm gold engineered nanoparticles (Au-ENM) was introduced into the proximal maternal artery. Distal uterine and umbilical vein effluents were collected every 10 min for 180 min to measure placental fluid dynamics. The quantification of Au-ENM transfer was conducted via inductively coupled plasma mass spectrometry (ICP-MS). Overall, we were able to measure Au-ENM within uterine and umbilical effluent with 20 min of material infusion. This novel methodology may be widely incorporated into studies of pharmacology, toxicology, and placental physiology.


Assuntos
Ouro/farmacologia , Nanoestruturas/química , Perfusão , Placenta/metabolismo , Animais , Feminino , Placenta/anatomia & histologia , Placenta/efeitos dos fármacos , Gravidez , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa