Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nucleic Acids Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874468

RESUMO

Access to DNA is the first level of control in regulating gene transcription, a control that is also critical for maintaining DNA integrity. Cellular senescence is characterized by profound transcriptional rearrangements and accumulation of DNA lesions. Here, we discovered an epigenetic complex between HDAC4 and HDAC1/HDAC2 that is involved in the erase of H2BK120 acetylation. The HDAC4/HDAC1/HDAC2 complex modulates the efficiency of DNA repair by homologous recombination, through dynamic deacetylation of H2BK120. Deficiency of HDAC4 leads to accumulation of H2BK120ac, impaired recruitment of BRCA1 and CtIP to the site of lesions, accumulation of damaged DNA and senescence. In senescent cells this complex is disassembled because of increased proteasomal degradation of HDAC4. Forced expression of HDAC4 during RAS-induced senescence reduces the genomic spread of γH2AX. It also affects H2BK120ac levels, which are increased in DNA-damaged regions that accumulate during RAS-induced senescence. In summary, degradation of HDAC4 during senescence causes the accumulation of damaged DNA and contributes to the activation of the transcriptional program controlled by super-enhancers that maintains senescence.

2.
J Pept Sci ; 23(10): 777-789, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28707817

RESUMO

The prevention of implant-associated infection, one the most feared complications in orthopaedic surgery, remains a major clinical challenge and urges development of effective methods to prevent bacterial colonization of implanted devices. Alpha-helical antimicrobial peptides (AMPs) may be promising candidates in this respect due to their potent and broad-spectrum antimicrobial activity, their low tendency to elicit resistance and possible retention of efficacy in the immobilized state. The aim of this study was to evaluate the potential of five different helical AMPs, the cathelicidins BMAP-27 and BMAP-28, their (1-18) fragments and the rationally designed, artificial P19(9/G7) peptide, for the prevention of orthopaedic implant infections. Peptides were effective at micromolar concentrations against 22 Staphylococcus and Streptococcus isolates from orthopaedic infections, while only BMAP-28 and to a lesser extent BMAP-27 were active against Enterococcus faecalis. Peptides in solution showed activities comparable to those of cefazolin and linezolid, on a molar basis, and also a variable capacity to neutralize bacterial lipopolysaccharide, while devoid of adverse effects on MG-63 osteoblast cells at concentrations corresponding to the MIC. The (1-18) BMAP fragments and P19(9/G7) were selected for further examination, based on better selectivity indices, and showed effectiveness in the presence of hyaluronic acid and in synovial fluid, while human serum affected their activity to variable extents, with BMAP-27(1-18) best retaining activity. This peptide was immobilized on streptavidin-resin beads and retained activity against reference Staphylococcus epidermidis and Staphylococcus aureus strains, with negligible toxicity towards osteoblasts, underlining its potential for the development of infection-resistant biomaterials for orthopaedic application. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Humanos , Testes de Sensibilidade Microbiana , Proteínas/química , Proteínas/farmacologia , Staphylococcus/efeitos dos fármacos
3.
Fish Shellfish Immunol ; 59: 456-468, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27818338

RESUMO

Cathelicidins, a major family of vertebrate antimicrobial peptides (AMPs), have a recognized role in the first line of defense against infections. They have been identified in several salmonid species, where the putative mature peptides are unusually long and rich in serine and glycine residues, often arranged in short multiple repeats (RLGGGS/RPGGGS) intercalated by hydrophobic motifs. Fragments of 24-40 residues, spanning specific motifs and conserved sequences in grayling or brown, rainbow and brook trout, were chemically synthesized and examined for antimicrobial activity against relevant Gram-positive and Gram-negative salmonid pathogens, as well as laboratory reference strains. They were not active in complete medium, but showed varying potency and activity spectra in diluted media. Bacterial membrane permeabilization also occurred only under these conditions and was indicated by rapid propidium iodide uptake in peptide-treated bacteria. However, circular dichroism analyses indicated that they did not significantly adopt ordered conformations in membrane-like environments. The peptides were not hemolytic or cytotoxic to trout cells, including freshly purified head kidney leukocytes (HKL) and the fibroblastic RTG-2 cell line. Notably, when exposed to them, HKL showed increased metabolic activity, while a growth-promoting effect was observed on RTG-2 cells, suggesting a functional interaction of salmonid cathelicidins with host cells similar to that shown by mammalian ones. The three most active peptides produced a dose-dependent increase in phagocytic uptake by HKL simultaneously stimulated with bacterial particles. The peptide STF(1-37), selected for further analyses, also enhanced phagocytic uptake in the presence of autologous serum, and increased intracellular killing of live E. coli. Furthermore, when tested on HKL in combination with the immunostimulant ß-glucan, it synergistically potentiated both phagocytic uptake and the respiratory burst response, activities that play a key role in fish immunity. Collectively, these data point to a role of salmonid cathelicidins as modulators of fish microbicidal mechanisms beyond a salt-sensitive antimicrobial activity, and encourage further studies also in view of potential applications in aquaculture.


Assuntos
Catelicidinas/genética , Catelicidinas/farmacologia , Salmonidae/imunologia , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Catelicidinas/química , Catelicidinas/isolamento & purificação , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/farmacologia , Domínios Proteicos , Salmonidae/genética , Salmonidae/microbiologia , Alinhamento de Sequência/veterinária
4.
Biosci Rep ; 43(11)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37881894

RESUMO

The need to minimise the impact of phytosanitary treatments for disease control boosted researchers to implement techniques with less environmental impact. The development of technologies using molecular mechanisms based on the modulation of metabolism by short dsRNA sequences appears promising. The intrinsic fragility of polynucleotides and the high cost of these techniques can be circumvented by nanocarriers that protect the bioactive molecule enabling high efficiency delivery to the leaf surface and extending its half-life. In this work, a specific protocol was developed aiming to assess the best methodological conditions for the synthesis of low-size chitosan nanoparticles (NPs) to be loaded with nucleotides. In particular, NPs have been functionalised with partially purified Green Fluorescent Protein dsRNAs (GFP dsRNA) and their size, surface charge and nucleotide retention capacity were analysed. Final NPs were also stained with FITC and sprayed on Nicotiana benthamiana leaves to assess, by confocal microscopy, both a distribution protocol and the fate of NPs up to 6 days after application. Finally, to confirm the ability of NPs to increase the efficacy of dsRNA interference, specific tests were performed: by means of GFP dsRNA-functionalised NPs, the nucleotide permanence during time was assessed both in vitro on detached wild-type N. benthamiana leaves and in planta; lastly, the inhibition of Botrytis cinerea on single leaves was also evaluated, using a specific fungal sequence (Bc dsRNA) as the NPs' functionalising agent. The encouraging results obtained are promising in the perspective of long-lasting application of innovative treatments based on gene silencing.


Assuntos
Quitosana , Nanopartículas , RNA de Cadeia Dupla/genética , Interferência de RNA , Proteção de Cultivos , Nucleotídeos
5.
iScience ; 26(12): 108566, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38144458

RESUMO

In pancreatic ductal adenocarcinomas (PDAC), the KRASG12D-NRF2 axis controls cellular functions such as redox homeostasis and metabolism. Disruption of this axis through suppression of NRF2 leads to profound reprogramming of metabolism. Unbiased transcriptome and metabolome analyses showed that PDAC cells with disrupted KRASG12D-NRF2 signaling (NRF2-/- cells) shift from aerobic glycolysis to metabolic pathways fed by amino acids. Metabolome, RNA-seq and qRT-PCR analyses revealed a blockade of the urea cycle, making NRF2-/- cells dependent on exogenous arginine for survival. Arginine is channeled into anabolic pathways, including the synthesis of phosphocreatine, which generates an energy buffer essential for cell growth. A similar switch was observed in tumor clones that had survived FOLFIRINOX therapy or blockade of KRAS signaling. Inhibition of the creatine pathway with cyclocreatine reduced both ATP and invasion rate in 3D spheroids from NRF2-deficient PDAC cells. Our study provides basis for the rational development of combination therapies for pancreatic cancer.

6.
J Photochem Photobiol B ; 231: 112449, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35504235

RESUMO

Cationic porphyrins bearing an alkyl side chain of 14 (2b) or 18 (2d) carbons dramatically inhibit proliferation of pancreatic cancer cells following treatment with light. We have compared two different ways of delivering porphyrin 2d: either in free form or engrafted into palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes (L-2d). Cell cytometry shows that while free 2d is taken up by pancreatic cancer cells by active (endocytosis) and passive (membrane fusion) transports, L-2d is internalized solely by endocytosis. Confocal microscopy showed that free 2d co-localizes with the cell membrane and lysosomes, whereas L-2d partly co-localizes with lysosomes and ER. It is found that free 2d inhibits the KRAS-Nrf2-GPX4 axis and strongly triggers lipid peroxidation, resulting in cell death by ferroptosis. By contrast, L-2d does not affect the KRAS-Nrf2-GPX4 axis and activates cell death mainly through apoptosis. Overall, our study demonstrates for the first time that cationic alkyl porphyrins, which have a IC50 ~ 23 nM, activate a dual mechanism of cell death, ferroptosis and apoptosis, where the predominant form depends on the delivery mode.


Assuntos
Neoplasias Pancreáticas , Porfirinas , Apoptose , Cátions , Humanos , Lipossomos/química , Fator 2 Relacionado a NF-E2 , Neoplasias Pancreáticas/tratamento farmacológico , Porfirinas/farmacologia , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Pancreáticas
7.
Food Funct ; 12(1): 351-361, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33325962

RESUMO

This research was conducted to evaluate the potential use of saturated monoglyceride (MG)-based gels in the protection of probiotics upon in vitro digestion. For this purpose, a Lactobacillus rhamnosus strain was inoculated into binary and ternary systems, containing MGs, a water phase composed of an aqueous solution at controlled pH or UHT skimmed milk, and in ternary gels, sunflower oil. Gel structure characterization was initially performed just after preparation and after 14 days of storage at 4 °C by rheological, mechanical, thermal, and microscopy analyses. Afterwards, probiotic viability upon in vitro digestion was evaluated. The results highlighted that all freshly prepared samples showed good capability to protect L. rhamnosus with the exception of the binary system containing milk. However, the digestion of samples after 14 days of storage showed that the ternary system containing skimmed milk exhibited the best protection performance ensuring a L. rhamnosus viability of almost 106 CFU g-1 at the end of the gastrointestinal passage. Confocal microscopy results demonstrated that bacterial cells were located prevalently within the aqueous domain near the monoglycerides and protein aggregates. Under these conditions, they can simultaneously achieve physical protection and find nutrients to survive environmental stresses. These findings suggest that MG-based gels can be proposed as efficient carriers of probiotic bacteria not only during food processing and storage but also upon digestion.


Assuntos
Lacticaseibacillus rhamnosus/metabolismo , Viabilidade Microbiana , Monoglicerídeos/química , Probióticos/metabolismo , Digestão , Géis
8.
Food Funct ; 12(3): 1373, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33434244

RESUMO

Correction for 'Effect of the formulation and structure of monoglyceride-based gels on the viability of probiotic Lactobacillus rhamnosus upon in vitro digestion' by Sofia Melchior et al., Food Funct., 2021, DOI: 10.1039/D0FO01788D.

9.
Colloids Surf B Biointerfaces ; 203: 111745, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33853003

RESUMO

One possibility to prevent prosthetic infections is to produce biomaterials resistant to bacterial colonization by anchoring membrane active antimicrobial peptides (AMPs) onto the implant surface. In this perspective, a deeper understanding of the mode of action of the immobilized peptides should improve the development of AMP-inspired infection-resistant biomaterials. The aim of the present study was to characterize the bactericidal mechanism against Staphylococcus epidermidis of the AMP BMAP27(1-18), immobilized on titanium disks and on a model resin support, by applying viability counts, Field Emission Scanning Electron Microscopy (FE-SEM), and a fluorescence microplate assay with a membrane potential-sensitive dye. The cytocompatibility to osteoblast-like MG-63 cells was investigated in monoculture and in co-culture with bacteria. The impact of peptide orientation was explored by using N- and C- anchored analogues. On titanium, the ∼50 % drop in bacteria viability and dramatically affected morphology indicate a contact-killing action exerted by the N- and C-immobilized peptides to the same extent. As further shown by the fluorescence assay with the resin-anchored peptides, the bactericidal effect was mediated by rapid membrane perturbation, similar to free peptides. However, at peptide MBC resin equivalents the C-oriented analogue proved more effective with more than 99 % killing and maximum fluorescence increase, compared to half-maximum fluorescence with more than 90 % killing produced by the N-orientation. Confocal microscopy analyses revealed 4-5 times better MG-63 cell adhesion on peptide-functionalized titanium both in monoculture and in co-culture with bacteria, regardless of peptide orientation, thus stimulating further studies on the effects of the immobilized BMAP27(1-18) on osteoblast cells.


Assuntos
Anti-Infecciosos , Staphylococcus epidermidis , Antibacterianos/farmacologia , Peptídeos , Titânio/farmacologia
10.
Mol Cancer Ther ; 20(6): 1039-1051, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785653

RESUMO

Leiomyosarcomas are rare and aggressive tumors characterized by a complex karyotype. Surgical resection with or without radiotherapy and chemotherapy is the standard curative treatment. Unfortunately, a high percentage of leiomyosarcomas recurs and metastasizes. In these cases, doxorubicin and ifosfamide represent the standard treatment but with low response rates. Here, we evaluated the induction of proteotoxic stress as a possible strategy to kill leiomyosarcoma cells in a therapeutic perspective. We show that aggressive leiomyosarcomas coexist with high levels of proteotoxic stress. As a consequence, we hypothesized that leiomyosarcoma cells are vulnerable to further increases of proteotoxic stress. The small compound 2c is a strong inducer of proteotoxic stress. In leiomyosarcoma cells, it triggers cell death coupled to a profound reorganization of the mitochondrial network. By using stimulated emission depletion microscopy, we have unveiled the existence of DIABLO/SMAC clusters that are modulated by 2c. Finally, we have engineered a new version of 2c linked to polyethylene glycol though a short peptide, named 2cPP. This new prodrug is specifically activated by proteases present in the tumor microenvironment. 2cPP shows a strong antitumor activity in vivo against leiomyosarcomas and no toxicity against normal cells.


Assuntos
Morte Celular/genética , Leiomiossarcoma/genética , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Leiomiossarcoma/mortalidade , Camundongos , Camundongos Nus , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Infect Immun ; 78(4): 1781-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20100862

RESUMO

Cathelicidins are peptide components of the innate immune system of mammals. Apart from exerting a direct antibiotic activity, they can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied, but there is a lack of published information on their expression and activities in the context of mastitis. The aims of this study were to investigate the expression of the bovine cathelicidins BMAP-27, BMAP-28, Bac5, and indolicidin in healthy and infected mammary tissue and in lipopolysaccharide (LPS)-treated cells, to determine their activities against bacteria isolated from bovine mastitis, and to examine their potentials to trigger defense responses in bovine mammary cells. The genes were found to be upregulated in LPS-stimulated neutrophils, but not in infected quarters or epithelial cells. All peptides showed a variably broad spectrum of activity against 28 bacterial isolates from bovine mastitis (MIC values, 0.5 to 32 microM), some of which were antibiotic resistant. The activity of each peptide was significantly enhanced when it was pairwise tested with the other peptides, reaching the synergy threshold when indolicidin was present. The bactericidal activity was sensitive to milk components; BMAP-27 and -28 were highly effective in mastitic bovine milk and inhibited in milk from healthy cows. Both peptides were also active in whey and in blood serum and triggered the expression of tumor necrosis factor alpha (TNF-alpha) in bovine mammary epithelial cells. Our results indicate multiple roles for the bovine cathelicidins in mastitis, with complementary and mutually enhanced antimicrobial activities against causative pathogens and the capacity to activate host cells.


Assuntos
Antibacterianos/imunologia , Bactérias/imunologia , Catelicidinas/imunologia , Células Epiteliais/imunologia , Glândulas Mamárias Animais/imunologia , Mastite Bovina/imunologia , Neutrófilos/imunologia , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Catelicidinas/biossíntese , Catelicidinas/farmacologia , Bovinos , Células Cultivadas , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Lipopolissacarídeos/imunologia , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
12.
Colloids Surf B Biointerfaces ; 185: 110586, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31644974

RESUMO

Bacterial infection of orthopaedic implants, often caused by Staphylococcus species, may ultimately lead to implant failure. The development of infection-resistant, osteoblast-compatible biomaterials could represent an effective strategy to prevent bacterial colonization of implants, reducing the need for antibiotics. In this study, the widely used biomaterial titanium was functionalized with BMAP27(1-18), an α-helical cathelicidin antimicrobial peptide that retains potent staphylocidal activity when immobilized on agarose beads. A derivative bearing a short spacer with a free thiol at the N-terminus was coupled to silanized titanium disks via thiol-maleimide chemistry. Tethering was successful, as assessed by Contact angle, Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), and X-ray Photoelectron Spectroscopy (XPS), with an average surface mass density of 456 ng/cm2 and a layer thickness of 3 nm. The functionalized titanium displayed antimicrobial properties against a reference strain of Staphylococcus epidermidis with well-known biofilm forming capability. Reduction of bacterial counts and morphological alterations of adhering bacteria, upon 2 h incubation, indicate a rapid contact-killing effect. The immobilized peptide was not toxic to osteoblasts, which adhered and spread better on functionalized titanium when co-cultured with bacteria, compared to non-coated surfaces. Results suggest that functionalization of titanium with BMAP27(1-18) could be promising for prevention of bacterial colonization in bone graft applications.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Osteoblastos/citologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Titânio/química , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Humanos , Osteoblastos/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Propriedades de Superfície , Catelicidinas
13.
Biochem Pharmacol ; 182: 114205, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32828802

RESUMO

A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.


Assuntos
Óxido Nítrico/fisiologia , Estresse Oxidativo/fisiologia , Neoplasias da Próstata/metabolismo , Radiossensibilizantes/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Clorofila/análogos & derivados , Clorofila/toxicidade , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/efeitos da radiação , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/efeitos da radiação
14.
J Med Chem ; 63(3): 1245-1260, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31930916

RESUMO

Designing small molecules able to break down G4 structures in mRNA (RG4s) offers an interesting approach to cancer therapy. Here, we have studied cationic porphyrins (CPs) bearing an alkyl chain up to 12 carbons, as they bind to RG4s while generating reactive oxygen species upon photoirradiation. Fluorescence-activated cell sorting (FACS) and confocal microscopy showed that the designed alkyl CPs strongly penetrate cell membranes, binding to KRAS and NRAS mRNAs under low-abundance cell conditions. In Panc-1 cells, alkyl CPs at nanomolar concentrations promote a dramatic downregulation of KRAS and NRAS expression, but only if photoactivated. Alkyl CPs also reduce the metabolic activity of pancreatic cancer cells and the growth of a Panc-1 xenograft in SCID mice. Propidium iodide/annexin assays and caspase 3, caspase 7, and PARP-1 analyses show that these compounds activate apoptosis. All these data demonstrate that the designed alkyl CPs are efficient photosensitizers for the photodynamic therapy of ras-driven cancers.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Quadruplex G/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Feminino , GTP Fosfo-Hidrolases/genética , Genes ras/efeitos dos fármacos , Humanos , Proteínas de Membrana/genética , Camundongos SCID , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Porfirinas/síntese química , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA/química , RNA/genética , Espécies Reativas de Oxigênio/metabolismo
15.
Peptides ; 71: 211-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26238597

RESUMO

Vulvovaginal candidiasis (VVC) is a frequent gynecological condition caused by Candida albicans and a few non-albicans Candida spp. It has a significant impact on the quality of life of the affected women also due to a considerable incidence of recurrent infections that are difficult to treat. The formation of fungal biofilm may contribute to the problematic management of recurrent VVC due to the intrinsic resistance of sessile cells to the currently available antifungals. Thus, alternative approaches for the prevention and control of biofilm-related infections are urgently needed. In this regard, the cationic antimicrobial peptides (AMPs) of the innate immunity are potential candidates for the development of novel antimicrobials as many of them display activity against biofilm formed by various microbial species. In the present study, we investigated the in vitro antifungal activities of the cathelicidin peptides LL-37 and BMAP-28 against pathogenic Candida spp. also including C. albicans, isolated from vaginal infections, and against C. albicans SC5314 as a reference strain. The antimicrobial activity was evaluated against planktonic and biofilm-grown Candida cells by using microdilution susceptibility and XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assays and, in the case of established biofilms, also by CFU enumeration and fluorescence microscopy. BMAP-28 was effective against planktonically grown yeasts in standard medium (MIC range, 2-32µM), and against isolates of C. albicans and Candida krusei in synthetic vaginal simulated fluid (MIC range 8-32µM, depending on the pH of the medium). Established 48-h old biofilms formed by C. albicans SC5314 and C. albicans and C. krusei isolates were 70-90% inhibited within 24h incubation with 16µM BMAP-28. As shown by propidium dye uptake and CFU enumeration, BMAP-28 at 32µM killed sessile C. albicans SC5314 by membrane permeabilization with a faster killing kinetics compared to 32µM miconazole (80-85% reduced biofilm viability in 90min vs 48h). In addition, BMAP-28 at 16µM prevented Candida biofilm formation on polystyrene and medical grade silicone surfaces by causing a >90% reduction in the viability of planktonic cells in 30min. LL-37 was overall less effective than BMAP-28 against planktonic Candida spp. (MIC range 4-≥64µM), and was ineffective against established Candida biofilms. However, LL-37 at 64µM prevented Candida biofilm development by inhibiting cell adhesion to polystyrene and silicone surfaces. Finally, Candida adhesion was strongly inhibited when silicone was pre-coated with a layer of BMAP-28 or LL-37, encouraging further studies for the development of peptide-based antimicrobial coatings.


Assuntos
Antifúngicos , Peptídeos Catiônicos Antimicrobianos , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Candidíase Vulvovaginal/tratamento farmacológico , Antifúngicos/química , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Candida albicans/isolamento & purificação , Candidíase Vulvovaginal/metabolismo , Feminino , Humanos , Catelicidinas
16.
Immunobiology ; 217(10): 962-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22317752

RESUMO

Apart from direct bacterial killing, antimicrobial host defence peptides (HDPs) exert various other biological activities that also include modulation of immune responses to infection. The bovine cathelicidin BMAP-28 has been extensively studied with regard to its direct antibacterial activity while little is known about its effects on immune cell function. We have investigated its ability to affect inflammatory pathways and to influence the proinflammatory response induced by LPS in RAW 264.7 macrophages, in terms of modulation of TLR4 activation and cytokine gene induction. BMAP-28 on its own elicited ERK1/2, p38 and NF-κB activation leading to upregulation of IL-1ß gene expression in these cells, suggesting it has the capacity to activate selected cellular pathways through direct effects on macrophages. As expected based on its in vitro LPS-binding properties, BMAP-28 blocked LPS-induced cytokine gene expression when added to the cell culture in combination with LPS. However it enhanced the induction of IL-1ß and IL-6 genes and suppressed that of IFN-ß when added prior to or following LPS stimulation over a 30-60 min time interval, or when co-administered with taxol as another TLR4 stimulant. It did not inhibit the expression of IFN-ß induced by the TLR3 ligand poly(I:C). Overall these results, and the fact that BMAP-28 increased the LPS-stimulated activation of NF-κB while diminishing that of IRF-3, suggest that the peptide potentiates the early TLR4-mediated proinflammatory cytokine response while inhibiting the TLR4/TRAM/TRIF signaling pathway leading to IRF-3 activation and IFN-ß gene expression. Using a TLR4-specific antibody we also found that BMAP-28 decreased the LPS-induced internalization of surface TLR4 required for initiating the TRAM/TRIF signaling pathway, which provides a mechanism for the inhibitory effect of the peptide on the TLR4/TRAM/TRIF pathway.


Assuntos
Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , NF-kappa B/metabolismo , Proteínas/farmacologia , Animais , Linhagem Celular , Citocinas/imunologia , Inflamação/genética , Inflamação/imunologia , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Ligação Proteica/imunologia , Proteínas/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa