Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Immunol ; 211(8): 1180-1186, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37782855

RESUMO

The human orthopneumovirus (human respiratory syncytial virus [RSV]) is a leading cause of respiratory disease in children worldwide and a significant cause of infant mortality in low- and middle-income countries. The natural immune response to the virus has a preponderant role in disease progression, with a rapid neutrophil infiltration and dysbalanced T cell response in the lungs associated with severe disease in infants. The development of preventive interventions against human RSV has been difficult partly due to the need to use animal models that only partially recapitulate the immune response as well as the disease progression seen in human infants. In this brief review, we discuss the contributions of the calf model of RSV infection to understanding immunity to RSV and in developing vaccine and drug candidates, focusing on recent research areas. We propose that the bovine model of RSV infection is a valuable alternative for assessing the translational potential of interventions aimed at the human population.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Lactente , Criança , Animais , Bovinos , Humanos , Pulmão , Modelos Animais de Doenças
2.
Immunology ; 163(3): 262-277, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33638192

RESUMO

Orthohantaviruses, previously named hantaviruses, cause two emerging zoonotic diseases: haemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Overall, over 200 000 cases are registered every year worldwide, with a fatality rate ranging between 0·1% and 15% for HFRS and between 20% and 40% for HCPS. No specific treatment or vaccines have been approved by the U.S. Food and Drug Administration (FDA) to treat or prevent hantavirus-caused syndromes. Currently, little is known about the mechanisms at the basis of hantavirus-induced disease. However, it has been hypothesized that an excessive inflammatory response plays an essential role in the course of the disease. Furthermore, the contributions of the cellular immune response to either viral clearance or pathology have not been fully elucidated. This article discusses recent findings relative to the immune responses elicited to hantaviruses in subjects suffering HFRS or HCPS, highlighting the similarities and differences between these two clinical diseases. Also, we summarize the most recent data about the cellular immune response that could be important for designing new vaccines to prevent this global public health problem.


Assuntos
Infecções por Hantavirus/imunologia , Orthohantavírus/fisiologia , Vacinas Virais/imunologia , Animais , Parada Cardíaca , Febre Hemorrágica com Síndrome Renal , Humanos , Imunidade Celular , Camundongos , Zoonoses Virais
3.
Clin Microbiol Rev ; 31(2)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29386235

RESUMO

The obligate intracellular bacterium Orientia tsutsugamushi is the causative agent of scrub typhus in humans, a serious mite-borne disease present in a widespread area of endemicity, which affects an estimated 1 million people every year. This disease may exhibit a broad range of presentations, ranging from asymptomatic to fatal conditions, with the latter being due to disseminated endothelial infection and organ injury. Unique characteristics of the biology and host-pathogen interactions of O. tsutsugamushi, including the high antigenic diversity among strains and the highly variable, short-lived memory responses developed by the host, underlie difficulties faced in the pursuit of an effective vaccine, which is an imperative need. Other factors that have hindered scientific progress relative to the infectious mechanisms of and the immune response triggered by this bacterium in vertebrate hosts include the limited number of mechanistic studies performed on animal models and the lack of genetic tools currently available for this pathogen. However, recent advances in animal model development are promising to improve our understanding of host-pathogen interactions. Here, we comprehensively discuss the recent advances in and future perspectives on host-pathogen interactions and the modulation of immune responses related to this reemerging disease, highlighting the role of animal models.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunomodulação/imunologia , Orientia tsutsugamushi/imunologia , Tifo por Ácaros/imunologia , Tifo por Ácaros/microbiologia , Humanos , Modelos Animais
4.
Biol Trace Elem Res ; 202(12): 5489-5501, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38438601

RESUMO

Zinc (Zn) is critical for immune function, and marginal Zn deficiency in calves can lead to suboptimal growth and increased disease susceptibility. However, in contrast to other trace minerals such as copper, tissue concentrations of Zn do not change readily in conditions of supplementation or marginal deficiency. Therefore, the evaluation of Zn status remains challenging. Zinc transporters are essential for maintaining intracellular Zn homeostasis, and their expression may indicate changes in Zn status in the animal. Here, we investigated the effects of dietary Zn supplementation on labile Zn concentration and Zn transporter gene expression in circulating immune cells isolated from feedlot steers. Eighteen Angus crossbred steers (261 ± 14 kg) were blocked by body weight and randomly assigned to two dietary treatments: a control diet (58 mg Zn/kg DM, no supplemental Zn) or control plus 150 mg Zn/kg DM (HiZn; 207 mg Zn/kg DM total). After 33 days, Zn supplementation increased labile Zn concentrations (as FluoZin-3 fluorescence) in monocytes, granulocytes, and CD4 T cells (P < 0.05) but had the opposite effect on CD8 and γδ T cells (P < 0.05). Zn transporter gene expression was analyzed on purified immune cell populations collected on days 27 or 28. ZIP11 and ZnT1 gene expression was lower (P < 0.05) in CD4 T cells from HiZn compared to controls. Expression of ZIP6 in CD8 T cells (P = 0.02) and ZnT7 in B cells (P = 0.01) was upregulated in HiZn, while ZnT9 tended (P = 0.06) to increase in B cells from HiZn. These results suggest dietary Zn concentration affects both circulating immune cell Zn concentrations and Zn transporter gene expression in healthy steers.


Assuntos
Suplementos Nutricionais , Zinco , Animais , Bovinos , Zinco/sangue , Masculino , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética
5.
Front Immunol ; 15: 1423843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100669

RESUMO

The Bacillus Calmette Guerin (BCG) vaccine has been shown to induce non-specific protection against diseases other than tuberculosis in vaccinated individuals, attributed to the induction of trained immunity. We have previously demonstrated that BCG administration induces innate immune training in mixed peripheral blood mononuclear cells and monocytes in calves. Gamma Delta (γδ) T cells are non-conventional T cells that exhibit innate and adaptive immune system features. They are in higher proportion in the peripheral blood of cattle than humans or rodents and play an essential role in bovine immune response to pathogens. In the current study, we determined if BCG administration induced innate immune training in bovine γδ T cells. A group of 16 pre-weaned Holstein calves (2-4 d age) were enrolled in the study and randomly assigned to vaccine and control groups (n=8/group). The vaccine group received two doses of 106 colony forming units (CFU) BCG Danish strain subcutaneously, separated by 2 weeks. The control group remained unvaccinated. Gamma delta T cells were purified from peripheral blood using magnetic cell sorting three weeks after receiving the 1st BCG dose. We observed functional changes in the γδ T cells from BCG-treated calves shown by increased IL-6 and TNF-α cytokine production in response to in vitro stimulation with Escherichia coli LPS and PAM3CSK4. ATAC-Seq analysis of 78,278 regions of open chromatin (peaks) revealed that γδ T cells from BCG-treated calves had an altered epigenetic status compared to cells from the control calves. Differentially accessible peaks (DAP) found near the promoters of innate immunity-related genes like Siglec14, Irf4, Ifna2, Lrrfip1, and Tnfrsf10d were 1 to 4-fold more accessible in cells from BCG-treated calves. MOTIF enrichment analysis of the sequences within DAPs, which explores transcription factor binding motifs (TFBM) upstream of regulatory elements, revealed TFBM for Eomes and IRF-5 were among the most enriched transcription factors. GO enrichment analysis of genes proximal to the DAPs showed enrichment of pathways such as regulation of IL-2 production, T-cell receptor signaling pathway, and other immune regulatory pathways. In conclusion, our study shows that subcutaneous BCG administration in pre-weaned calves can induce innate immune memory in the form of trained immunity in γδ T cells. This memory is associated with increased chromatin accessibility of innate immune response-related genes, thereby inducing a functional trained immune response evidenced by increased IL-6 and TNF-α cytokine production.


Assuntos
Vacina BCG , Imunidade Inata , Animais , Bovinos , Vacina BCG/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Injeções Subcutâneas , Mycobacterium bovis/imunologia , Citocinas/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Vacinação , Memória Imunológica
6.
Vaccines (Basel) ; 10(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35632475

RESUMO

Background:Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is a live attenuated vaccine mainly administered to newborns and used for over 100 years to prevent the disease caused by Mycobacterium tuberculosis (M. tb). This vaccine can induce immune response polarization towards a Th1 profile, which is desired for counteracting M. tb, other mycobacteria, and unrelated intracellular pathogens. The vaccine BCG has been used as a vector to express recombinant proteins and has been shown to protect against several diseases, particularly respiratory viruses. Methods: BCG was used to develop recombinant vaccines expressing either the Nucleoprotein from SARS-CoV-2 or Andes orthohantavirus. Mice were immunized with these vaccines with the aim of evaluating the safety and immunogenicity parameters. Results: Immunization with two doses of 1 × 108 CFU or one dose of 1 × 105 CFU of these BCGs was safe in mice. A statistically significant cellular immune response was induced by both formulations, characterized as the activation of CD4+ and CD8+ T cells. Stimulation with unrelated antigens resulted in increased expression of activation markers by T cells and secretion of IL-2 and IFN-γ, while increased secretion of IL-6 was found for both recombinant vaccines; all of these parameters related to a trained immunity profile. The humoral immune response elicited by both vaccines was modest, but further exposure to antigens could increase this response. Conclusions: The BCG vaccine is a promising platform for developing vaccines against different pathogens, inducing a marked antigen-specific immune response.

7.
Front Immunol ; 12: 664212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981309

RESUMO

The human respiratory syncytial virus (hRSV) constitutes a major health burden, causing millions of hospitalizations in children under five years old worldwide due to acute lower respiratory tract infections. Despite decades of research, licensed vaccines to prevent hRSV are not available. Development of vaccines against hRSV targeting young infants requires ruling out potential vaccine-enhanced disease presentations. To achieve this goal, vaccine testing in proper animal models is essential. A recombinant BCG vaccine that expresses the Nucleoprotein of hRSV (rBCG-N-hRSV) protects mice against hRSV infection, eliciting humoral and cellular immune protection. Further, this vaccine was shown to be safe and immunogenic in human adult volunteers. Here, we evaluated the safety, immunogenicity, and protective efficacy of the rBCG-N-hRSV vaccine in a neonatal bovine RSV calf infection model. Newborn, colostrum-replete Holstein calves were either vaccinated with rBCG-N-hRSV, WT-BCG, or left unvaccinated, and then inoculated via aerosol challenge with bRSV strain 375. Vaccination with rBCG-N-hRSV was safe and well-tolerated, with no systemic adverse effects. There was no evidence of vaccine-enhanced disease following bRSV challenge of rBCG-N-hRSV vaccinated animals, suggesting that the vaccine is safe for use in neonates. Vaccination increased virus-specific IgA and virus-neutralization activity in nasal fluid and increased the proliferation of virus- and BCG-specific CD4+ and CD8+ T cells in PBMCs and lymph nodes at 7dpi. Furthermore, rBCG-N-hRSV vaccinated calves developed reduced clinical disease as compared to unvaccinated control calves, although neither pathology nor viral burden were significantly reduced in the lungs. These results suggest that the rBCG-N-hRSV vaccine is safe in neonatal calves and induces protective humoral and cellular immunity against this respiratory virus. These data from a newborn animal model provide further support to the notion that this vaccine approach could be considered as a candidate for infant immunization against RSV.


Assuntos
Vacina BCG/imunologia , Doenças dos Bovinos/prevenção & controle , Imunogenicidade da Vacina , Infecções por Vírus Respiratório Sincicial/veterinária , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Bovino/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BCG/administração & dosagem , Vacina BCG/efeitos adversos , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Imunização , Testes de Neutralização , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinação , Eliminação de Partículas Virais
8.
Artigo em Inglês | MEDLINE | ID: mdl-30984626

RESUMO

The human Respiratory Syncytial Virus (hRSV) is the leading cause of severe acute lower respiratory tract infections (ALRTIs) in humans at all ages and is the main cause of hospitalization due to pneumonia, asthma, and bronchiolitis in infants. hRSV symptoms mainly develop due to an excessive host immune and inflammatory response in the respiratory tissue. hRSV infection during life is frequent and likely because of non-optimal immunological memory is developed against this virus. Vaccine development against this pathogen has been delayed after the detrimental effects produced in children by vaccination with a formalin-inactivated hRSV preparation (FI-hRSV), which caused enhanced disease upon natural viral infection. Since then, several studies have focused on understanding the mechanisms underlying such disease exacerbation. Along these lines, several studies have suggested that antibodies elicited by immunization with FI-hRSV show low neutralizing capacity and promote the formation of immune complexes containing hRSV (hRSV-ICs), which contribute to hRSV pathogenesis through the engagement of Fc gamma receptors (FcγRs) expressed on the surface of immune cells. Furthermore, a role for FcγRs is supported by studies evaluating the contribution of these molecules to hRSV-induced disease. These studies have shown that FcγRs can modulate viral clearance by the host and the inflammatory response triggered by hRSV infection. In addition, ICs can facilitate viral entry into host cells expressing FcγRs, thus extending hRSV infectivity. In this article, we discuss current knowledge relative to the contribution of hRSV-ICs and FcγRs to the pathogenesis caused by hRSV and their putative role in the exacerbation of the disease caused by this virus after FI-hRSV vaccination. A better understanding FcγRs involvement in the immune response against hRSV will contribute to the development of new prophylactic or therapeutic tools to promote virus clearance with limited inflammatory damage to the airways.


Assuntos
Interações Hospedeiro-Patógeno , Receptores de IgG/metabolismo , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Vírus Sincicial Respiratório Humano/patogenicidade , Complexo Antígeno-Anticorpo/metabolismo , Endocitose , Humanos
9.
Front Microbiol ; 10: 873, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130923

RESUMO

The human respiratory syncytial virus (hRSV) is the main etiologic agent of severe lower respiratory tract infections that affect young children throughout the world, associated with significant morbidity and mortality, becoming a serious public health problem globally. Up to date, no licensed vaccines are available to prevent severe hRSV-induced disease, and the generation of safe-effective vaccines has been a challenging task, requiring constant biomedical research aimed to overcome this ailment. Among the difficulties presented by the study of this pathogen, it arises the fact that there is no single animal model that resembles all aspects of the human pathology, which is due to the specificity that this pathogen has for the human host. Thus, for the study of hRSV, different animal models might be employed, depending on the goal of the study. Of all the existing models, the murine model has been the most frequent model of choice for biomedical studies worldwide and has been of great importance at contributing to the development and understanding of vaccines and therapies against hRSV. The most notable use of the murine model is that it is very useful as a first approach in the development of vaccines or therapies such as monoclonal antibodies, suggesting in this way the direction that research could have in other preclinical models that have higher maintenance costs and more complex requirements in its management. However, several additional different models for studying hRSV, such as other rodents, mustelids, ruminants, and non-human primates, have been explored, offering advantages over the murine model. In this review, we discuss the various applications of animal models to the study of hRSV-induced disease and the advantages and disadvantages of each model, highlighting the potential of each model to elucidate different features of the pathology caused by the hRSV infection.

10.
Front Immunol ; 10: 2806, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849980

RESUMO

The Bacillus Calmette-Guérin (BCG) is a live attenuated tuberculosis vaccine that has the ability to induce non-specific cross-protection against pathogens that might be unrelated to the target disease. Vaccination with BCG reduces mortality in newborns and induces an improved innate immune response against microorganisms other than Mycobacterium tuberculosis, such as Candida albicans and Staphylococcus aureus. Innate immune cells, including monocytes and natural killer (NK) cells, contribute to this non-specific immune protection in a way that is independent of memory T or B cells. This phenomenon associated with a memory-like response in innate immune cells is known as "trained immunity." Epigenetic reprogramming through histone modification in the regulatory elements of particular genes has been reported as one of the mechanisms associated with the induction of trained immunity in both, humans and mice. Indeed, it has been shown that BCG vaccination induces changes in the methylation pattern of histones associated with specific genes in circulating monocytes leading to a "trained" state. Importantly, these modifications can lead to the expression and/or repression of genes that are related to increased protection against secondary infections after vaccination, with improved pathogen recognition and faster inflammatory responses. In this review, we discuss BCG-induced cross-protection and acquisition of trained immunity and potential heterologous effects of recombinant BCG vaccines.


Assuntos
Imunidade Adaptativa , Vacina BCG/imunologia , Proteção Cruzada/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Vacina BCG/administração & dosagem , Interações Hospedeiro-Patógeno , Humanos , Imunomodulação , Mycobacterium bovis/imunologia , Vacinação , Vacinologia/métodos
11.
Ticks Tick Borne Dis ; 9(4): 792-797, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29530468

RESUMO

The presented study analyzed the presence and geographical distribution of the tropical and temperate lineages of Rhipicephalus sanguineus sensu lato in Chile. R. sanguineus s.l. ticks were collected from dogs at 14 sites in northern and central Chile for morphological and genetic analysis based on the 16S rDNA gene. Phylogenetic studies proved the existence of both, the tropical and the temperate lineages. The former was represented by a single haplotype and occurred in the far north; the latter included four haplotypes and was observed from the Tarapacá Region southwards. In four sites at latitudes from 20°S to 22°S, both lineages were found to coexist. Our study discovered for the first time the existence of the tropical lineage in Chile and demonstrated that distributions of the tropical and temperate lineages overlap, forming a transitional zone of approximately 200 km in northern coastal Chile.


Assuntos
Distribuição Animal , Doenças do Cão/epidemiologia , Filogenia , Rhipicephalus sanguineus/genética , Infestações por Carrapato/veterinária , Animais , Chile/epidemiologia , Clima , Doenças do Cão/parasitologia , Cães , Variação Genética , Geografia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Infestações por Carrapato/epidemiologia
12.
Expert Opin Investig Drugs ; 27(9): 721-731, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30111181

RESUMO

INTRODUCTION: The human respiratory syncytial virus (hRSV) is the main cause of acute lower respiratory tract infection in susceptible population worldwide, such as young children and the elderly. Although hRSV is a major public health burden, there are no licensed vaccines and the only available therapy is palivizumab. During life, reinfections with hRSV are common, suggesting that the virus can impair the development of an efficient host immune response. This feature has hindered the development of efficient therapies. AREAS COVERED: This article focuses on research about the natural development of antibodies in humans after the exposure to hRSV. The difficulties of developing anti-hRSV therapies based on monoclonal antibodies have been recently associated to the relationship between the disease outcome and the pattern of antibody response. EXPERT OPINION: Development of monoclonal antibodies is a potentially successful approach to prevent the population from suffering severe respiratory diseases caused by hRSV infection, for which there are no available vaccines. Although the use of palivizumab is safe, its effectiveness is controversial. Recent data have prompted research to develop therapies targeting alternative viral antigens, rather than focusing only on the F protein, as well as the development of antibodies with a cell-mediated function.


Assuntos
Antivirais/administração & dosagem , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Idoso , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Formação de Anticorpos/imunologia , Antivirais/farmacologia , Criança , Desenho de Fármacos , Humanos , Palivizumab/administração & dosagem , Palivizumab/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa