Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 11(3): e0002222, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35191748

RESUMO

Here, we report the complete genome sequence of the race 4 strain Xanthomonas campestris pv. campestris SB80, which was isolated from a symptomatic white head cabbage leaf in Samsun Province, Turkey, in 2019. The genome consists of a circular chromosome (5,129,762 bp) with a G+C content of 64.98%, for which 4,159 putative protein-coding genes, 2 rRNA operons, 54 tRNAs, and 86 noncoding RNAs (ncRNAs) were predicted.

2.
ISME Commun ; 2(1): 89, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37938754

RESUMO

The understanding and manipulation of microbial communities toward the conversion of lignocellulose and plastics are topics of interest in microbial ecology and biotechnology. In this study, the polymer-degrading capability of a minimal lignocellulolytic microbial consortium (MELMC) was explored by genome-resolved metagenomics. The MELMC was mostly composed (>90%) of three bacterial members (Pseudomonas protegens; Pristimantibacillus lignocellulolyticus gen. nov., sp. nov; and Ochrobactrum gambitense sp. nov) recognized by their high-quality metagenome-assembled genomes (MAGs). Functional annotation of these MAGs revealed that Pr. lignocellulolyticus could be involved in cellulose and xylan deconstruction, whereas Ps. protegens could catabolize lignin-derived chemical compounds. The capacity of the MELMC to transform synthetic plastics was assessed by two strategies: (i) annotation of MAGs against databases containing plastic-transforming enzymes; and (ii) predicting enzymatic activity based on chemical structural similarities between lignin- and plastics-derived chemical compounds, using Simplified Molecular-Input Line-Entry System and Tanimoto coefficients. Enzymes involved in the depolymerization of polyurethane and polybutylene adipate terephthalate were found to be encoded by Ps. protegens, which could catabolize phthalates and terephthalic acid. The axenic culture of Ps. protegens grew on polyhydroxyalkanoate (PHA) nanoparticles and might be a suitable species for the industrial production of PHAs in the context of lignin and plastic upcycling.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa