RESUMO
The many functions of microbial communities emerge from a complex web of interactions between organisms and their environment. This poses a significant obstacle to engineering microbial consortia, hindering our ability to harness the potential of microorganisms for biotechnological applications. In this study, we demonstrate that the collective effect of ecological interactions between microbes in a community can be captured by simple statistical models that predict how adding a new species to a community will affect its function. These predictive models mirror the patterns of global epistasis reported in genetics, and they can be quantitatively interpreted in terms of pairwise interactions between community members. Our results illuminate an unexplored path to quantitatively predicting the function of microbial consortia from their composition, paving the way to optimizing desirable community properties and bringing the tasks of predicting biological function at the genetic, organismal, and ecological scales under the same quantitative formalism.
Assuntos
Microbiologia Ambiental , Epistasia Genética , Consórcios Microbianos , Biologia Sintética , Interações Microbianas , BioengenhariaRESUMO
Microorganisms play a central role in biotechnology and it is key that we develop strategies to engineer and optimize their functionality. To this end, most efforts have focused on introducing genetic manipulations in microorganisms which are then grown either in monoculture or in mixed-species consortia. An alternative strategy to optimize microbial processes is to rationally engineer the environment in which microbes grow. The microbial environment is multidimensional, including factors such as temperature, pH, salinity, nutrient composition, etc. These environmental factors all influence the growth and phenotypes of microorganisms and they generally "interact" with one another, combining their effects in complex, non-additive ways. In this piece, we overview the origins and consequences of these "interactions" between environmental factors and discuss how they have been built into statistical, bottom-up predictive models of microbial function to identify optimal environmental conditions for monocultures and microbial consortia. We also overview alternative "top-down" approaches, such as genetic algorithms, to finding optimal combinations of environmental factors. By providing a brief summary of the state of this field, we hope to stimulate further work on the rational manipulation and optimization of the microbial environment.
Assuntos
Temperatura , Consórcios Microbianos/fisiologia , Concentração de Íons de Hidrogênio , Biotecnologia/métodos , Bactérias/genética , Bactérias/metabolismo , Meio Ambiente , SalinidadeRESUMO
Antimicrobial resistance (AMR) in bacteria is a major public health threat and conjugative plasmids play a key role in the dissemination of AMR genes among bacterial pathogens. Interestingly, the association between AMR plasmids and pathogens is not random and certain associations spread successfully at a global scale. The burst of genome sequencing has increased the resolution of epidemiological programs, broadening our understanding of plasmid distribution in bacterial populations. Despite the immense value of these studies, our ability to predict future plasmid-bacteria associations remains limited. Numerous empirical studies have recently reported systematic patterns in genetic interactions that enable predictability, in a phenomenon known as global epistasis. In this perspective, we argue that global epistasis patterns hold the potential to predict interactions between plasmids and bacterial genomes, thereby facilitating the prediction of future successful associations. To assess the validity of this idea, we use previously published data to identify global epistasis patterns in clinically relevant plasmid-bacteria associations. Furthermore, using simple mechanistic models of antibiotic resistance, we illustrate how global epistasis patterns may allow us to generate new hypotheses on the mechanisms associated with successful plasmid-bacteria associations. Collectively, we aim at illustrating the relevance of exploring global epistasis in the context of plasmid biology.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Epistasia Genética , Plasmídeos/genética , Genoma Bacteriano , Bactérias/genéticaRESUMO
Microbial communities frequently invade one another as a whole, a phenomenon known as community coalescence. Despite its potential importance for the assembly, dynamics, and stability of microbial consortia, as well as its prospective utility for microbiome engineering, our understanding of the processes that govern it is still very limited. Theory has suggested that microbial communities may exhibit cohesiveness in the face of invasions emerging from collective metabolic interactions across microbes and their environment. This cohesiveness may lead to correlated invasional outcomes, where the fate of a given taxon is determined by that of other members of its community-a hypothesis known as ecological coselection. Here, we have performed over 100 invasion and coalescence experiments with microbial communities of various origins assembled in two different synthetic environments. We show that the dominant members of the primary communities can recruit their rarer partners during coalescence (top-down coselection) and also be recruited by them (bottom-up coselection). With the aid of a consumer-resource model, we found that the emergence of top-down or bottom-up cohesiveness is modulated by the structure of the underlying cross-feeding networks that sustain the coalesced communities. The model also predicts that these two forms of ecological coselection cannot co-occur under our conditions, and we have experimentally confirmed that one can be strong only when the other is weak. Our results provide direct evidence that collective invasions can be expected to produce ecological coselection as a result of cross-feeding interactions at the community level.
Assuntos
Consórcios Microbianos/fisiologia , Modelos BiológicosRESUMO
Predictively linking taxonomic composition and quantitative ecosystem functions is a major aspiration in microbial ecology, which must be resolved if we wish to engineer microbial consortia. Here, we have addressed this open question for an ecological function of major biotechnological relevance: alcoholic fermentation in wine yeast communities. By exhaustively phenotyping an extensive collection of naturally occurring wine yeast strains, we find that most ecologically and industrially relevant traits exhibit phylogenetic signal, allowing functional traits in wine yeast communities to be predicted from taxonomy. Furthermore, we demonstrate that the quantitative contributions of individual wine yeast strains to the function of complex communities followed simple quantitative rules. These regularities can be integrated to quantitatively predict the function of newly assembled consortia. Besides addressing theoretical questions in functional ecology, our results and methodologies can provide a blueprint for rationally managing microbial processes of biotechnological relevance.
Assuntos
Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/genética , Ecossistema , Filogenia , Fermentação , LevedurasRESUMO
Accurate prediction of tumor progression is key for adaptive therapy and precision medicine. Cancer progression models (CPMs) can be used to infer dependencies in mutation accumulation from cross-sectional data and provide predictions of tumor progression paths. However, their performance when predicting complete evolutionary trajectories is limited by violations of assumptions and the size of available data sets. Instead of predicting full tumor progression paths, here we focus on short-term predictions, more relevant for diagnostic and therapeutic purposes. We examine whether five distinct CPMs can be used to answer the question "Given that a genotype with n mutations has been observed, what genotype with n + 1 mutations is next in the path of tumor progression?" or, shortly, "What genotype comes next?". Using simulated data we find that under specific combinations of genotype and fitness landscape characteristics CPMs can provide predictions of short-term evolution that closely match the true probabilities, and that some genotype characteristics can be much more relevant than global features. Application of these methods to 25 cancer data sets shows that their use is hampered by a lack of information needed to make principled decisions about method choice. Fruitful use of these methods for short-term predictions requires adapting method's use to local genotype characteristics and obtaining reliable indicators of performance; it will also be necessary to clarify the interpretation of the method's results when key assumptions do not hold.
Assuntos
Biologia Computacional/métodos , Modelos Genéticos , Neoplasias , Progressão da Doença , Evolução Molecular , Genótipo , Humanos , Mutação/genética , Neoplasias/genética , Neoplasias/patologiaRESUMO
Gene expression activity is heterogeneous in a population of isogenic cells. Identifying the molecular basis of this variability will improve our understanding of phenomena like tumor resistance to drugs, virus infection, or cell fate choice. The complexity of the molecular steps and machines involved in transcription and translation could introduce sources of randomness at many levels, but a common constraint to most of these processes is its energy dependence. In eukaryotic cells, most of this energy is provided by mitochondria. A clonal population of cells may show a large variability in the number and functionality of mitochondria. Here, we discuss how differences in the mitochondrial content of each cell contribute to heterogeneity in gene products. Changes in the amount of mitochondria can also entail drastic alterations of a cell's gene expression program, which ultimately leads to phenotypic diversity. Also watch the Video Abstract.
Assuntos
Processamento Alternativo/genética , Heterogeneidade Genética , Mitocôndrias/genética , Transcrição Gênica , DNA Mitocondrial/genética , Células Eucarióticas , Regulação da Expressão Gênica/genética , HumanosRESUMO
Interactions between mutations (epistasis) can add substantial complexity to genotype-phenotype maps, hampering our ability to predict evolution. Yet, recent studies have shown that the fitness effect of a mutation can often be predicted from the fitness of its genetic background using simple, linear relationships. This phenomenon, termed global epistasis, has been leveraged to reconstruct fitness landscapes and infer adaptive trajectories in a wide variety of contexts. However, little attention has been paid to how patterns of global epistasis may be affected by environmental variation, despite this variation frequently being a major driver of evolution. This is particularly relevant for the evolution of drug resistance, where antimicrobial drugs may change the environment faced by pathogens and shape their adaptive trajectories in ways that can be difficult to predict. By analyzing a fitness landscape of four mutations in a gene encoding an essential enzyme of P. falciparum (a parasite cause of malaria), here we show that patterns of global epistasis can be strongly modulated by the concentration of a drug in the environment. Expanding on previous theoretical results, we demonstrate that this modulation can be quantitatively explained by how specific gene-by-gene interactions are modified by drug dose. Importantly, our results highlight the need to incorporate potential environmental variation into the global epistasis framework in order to predict adaptation in dynamic environments.
Assuntos
Epistasia Genética , Aptidão Genética , Genótipo , Mutação , Resistência a Medicamentos , Evolução Molecular , Modelos GenéticosRESUMO
Quantitatively linking the composition and function of microbial communities is a major aspiration of microbial ecology. Microbial community functions emerge from a complex web of molecular interactions between cells, which give rise to population-level interactions among strains and species. Incorporating this complexity into predictive models is highly challenging. Inspired by a similar problem in genetics of predicting quantitative phenotypes from genotypes, an ecological community-function (or structure-function) landscape could be defined that maps community composition and function. In this piece, we present an overview of our current understanding of these community landscapes, their uses, limitations, and open questions. We argue that exploiting the parallels between both landscapes could bring powerful predictive methodologies from evolution and genetics into ecology, providing a boost to our ability to engineer and optimize microbial consortia.
Assuntos
Consórcios Microbianos , Microbiota , Consórcios Microbianos/genética , Microbiota/genética , EcologiaRESUMO
Epistatic interactions between mutations add substantial complexity to adaptive landscapes and are often thought of as detrimental to our ability to predict evolution. Yet, patterns of global epistasis, in which the fitness effect of a mutation is well-predicted by the fitness of its genetic background, may actually be of help in our efforts to reconstruct fitness landscapes and infer adaptive trajectories. Microscopic interactions between mutations, or inherent nonlinearities in the fitness landscape, may cause global epistasis patterns to emerge. In this brief review, we provide a succinct overview of recent work about global epistasis, with an emphasis on building intuition about why it is often observed. To this end, we reconcile simple geometric reasoning with recent mathematical analyses, using these to explain why different mutations in an empirical landscape may exhibit different global epistasis patterns-ranging from diminishing to increasing returns. Finally, we highlight open questions and research directions. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Assuntos
Epistasia Genética , Modelos Genéticos , Mutação , Aptidão Genética , Evolução MolecularRESUMO
Microbial consortia exhibit complex functional properties in contexts ranging from soils to bioreactors to human hosts. Understanding how community composition determines function is a major goal of microbial ecology. Here we address this challenge using the concept of community-function landscapes-analogues to fitness landscapes-that capture how changes in community composition alter collective function. Using datasets that represent a broad set of community functions, from production/degradation of specific compounds to biomass generation, we show that statistically inferred landscapes quantitatively predict community functions from knowledge of species presence or absence. Crucially, community-function landscapes allow prediction without explicit knowledge of abundance dynamics or interactions between species and can be accurately trained using measurements from a small subset of all possible community compositions. The success of our approach arises from the fact that empirical community-function landscapes appear to be not rugged, meaning that they largely lack high-order epistatic contributions that would be difficult to fit with limited data. Finally, we show that this observation holds across a wide class of ecological models, suggesting community-function landscapes can be efficiently inferred across a broad range of ecological regimes. Our results open the door to the rational design of consortia without detailed knowledge of abundance dynamics or interactions.
Assuntos
Microbiota , Humanos , Biomassa , Solo , Modelos TeóricosRESUMO
Directed evolution is a form of artificial selection that has been used for decades to find biomolecules and organisms with new or enhanced functional traits. Directed evolution can be conceptualized as a guided exploration of the genotype-phenotype map, where genetic variants with desirable phenotypes are first selected and then mutagenized to search the genotype space for an even better mutant. In recent years, the idea of applying artificial selection to microbial communities has gained momentum. In this article, we review the main limitations of artificial selection when applied to large and diverse collectives of asexually dividing microbes and discuss how the tools of directed evolution may be deployed to engineer communities from the top down. We conceptualize directed evolution of microbial communities as a guided exploration of an ecological structure-function landscape and propose practical guidelines for navigating these ecological landscapes.
Assuntos
Microbiota , Animais , Evolução Biológica , Genótipo , Humanos , FenótipoRESUMO
Directed evolution has been used for decades to engineer biological systems at or below the organismal level. Above the organismal level, a small number of studies have attempted to artificially select microbial ecosystems, with uneven and generally modest success. Our theoretical understanding of artificial ecosystem selection is limited, particularly for large assemblages of asexual organisms, and we know little about designing efficient methods to direct their evolution. Here, we have developed a flexible modelling framework that allows us to systematically probe any arbitrary selection strategy on any arbitrary set of communities and selected functions. By artificially selecting hundreds of in silico microbial metacommunities under identical conditions, we first show that the main breeding methods used to date, which do not necessarily let communities reach their ecological equilibrium, are outperformed by a simple screen of sufficiently mature communities. We then identify a range of alternative directed evolution strategies that, particularly when applied in combination, are well suited for the top-down engineering of large, diverse and stable microbial consortia. Our results emphasize that directed evolution allows an ecological structure-function landscape to be navigated in search of dynamically stable and ecologically resilient communities with desired quantitative attributes.
Assuntos
EcossistemaRESUMO
Influenza virus stablishes a network of virus-host functional interactions, which depends on chromatin dynamic and therefore on epigenetic modifications. Using an unbiased search, we analyzed the epigenetic changes at DNA methylation and post-translational histone modification levels induced by the infection. DNA methylation was unaltered, while we found a general decrease on histone acetylation, which correlates with transcriptional inactivation and may cooperate with the impairment of cellular transcription that causes influenza virus infection. A particular increase in H3K79 methylation was observed and the use of an inhibitor of the specific H3K79 methylase, Dot1L enzyme, or its silencing, increased influenza virus replication. The antiviral response was reduced in conditions of Dot1L downregulation, since decreased nuclear translocation of NF-kB complex, and IFN-ß, Mx1 and ISG56 expression was detected. The data suggested a control of antiviral signaling by methylation of H3K79 and consequently, influenza virus replication was unaffected in IFN pathway-compromised, Dot1L-inhibited cells. H3K79 methylation also controlled replication of another potent interferon-inducing virus such as vesicular stomatitis virus, but did not modify amplification of respiratory syncytial virus that poorly induces interferon signaling. Epigenetic methylation of H3K79 might have an important role in controlling interferon-induced signaling against viral pathogens.
Assuntos
Metilação de DNA , Epigênese Genética , Código das Histonas , Interações Hospedeiro-Patógeno , Orthomyxoviridae/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular Tumoral , Cães , Células HEK293 , Histona-Lisina N-Metiltransferase , Humanos , Interferon beta/metabolismo , Células Madin Darby de Rim Canino , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Resistência a Myxovirus/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a RNA , Fatores de Transcrição/metabolismo , Replicação ViralRESUMO
Fractional killing is the main cause of tumour resistance to chemotherapy. This phenomenon is observed even in genetically identical cancer cells in homogeneous microenvironments. To understand this variable resistance, here we investigate the individual responses to TRAIL in a clonal population of HeLa cells using live-cell microscopy and computational modelling. We show that the cellular mitochondrial content determines the apoptotic fate and modulates the time to death, cells with higher mitochondrial content are more prone to die. We find that all apoptotic protein levels are modulated by the mitochondrial content. Modelling the apoptotic network, we demonstrate that these correlations, and especially the differential control of anti- and pro-apoptotic protein pairs, confer mitochondria a powerful discriminatory capacity of apoptotic fate. We find a similar correlation between the mitochondria and apoptotic proteins in colon cancer biopsies. Our results reveal a different role of mitochondria in apoptosis as the global regulator of apoptotic protein expression.