Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 57(13): 3459-3463, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29485242

RESUMO

Ferrierite zeolites with nanosized crystals and external surface areas higher than 250 m2 g-1 have been prepared at relatively low synthesis temperature (120 °C) by means of the collaborative effect of two organic structure directing agents (OSDA). In this way, hierarchical porosity is achieved without the use of post-synthesis treatments that usually involve leaching of T atoms and solid loss. Adjusting the synthesis conditions it is possible to decrease the crystallite size in the directions of the 8- and 10-ring channels, [010] and [001] respectively, reducing their average pore length to 10-30 nm and increasing the number of pores accessible. The small crystal size of the nano-ferrierites results in an improved accessibility of reactants to the catalytic active centers and enhanced product diffusion, leading to higher conversion and selectivity with lower deactivation rates for the oligomerization of 1-pentene into longer-chain olefins.

2.
Chem Sci ; 8(12): 8138-8149, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29568462

RESUMO

The synthesis of the ZSM-5 and beta zeolites in their nanosized form has been achieved by using simple alkyl-substituted mono-cationic cyclic ammonium cations as OSDA molecules. The particular combination of a cyclic fragment and a short linear alkyl-chain group (preferentially C4) within the monocationic OSDA molecules allows directing the crystallization of nanosized zeolites with excellent solid yields (above 90%). Interestingly, the formation of the nanosized ZSM-5 and beta zeolites mostly depends on the size and nature of the cyclic fragment of the OSDA molecule, resulting in all cases in nanocrystalline solids with homogeneous distributions of particle sizes (∼10-25 nm) and controlled Si/Al molar ratios (∼15-30). The achieved nanosized ZSM-5 and beta zeolites have been extensively characterized by different techniques to study their physico-chemical properties, such as chemical composition, pore accessibility or Brønsted acidity, among others. Moreover, the catalytic properties of the nanosized ZSM-5 and beta zeolites have been evaluated for different chemical reactions, including methanol-to-olefins (MTO) in the case of ZSM-5, and alkylation of benzene with propylene to obtain cumene and oligomerization of light olefins to liquid fuels in the case of beta, observing in all cases improved catalytic activity and product selectivity towards target products when compared to related catalysts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa