Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 16(10): e1009054, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33001999

RESUMO

Genetic and molecular analysis of rare disease is made difficult by the small numbers of affected patients. Phenotypic comorbidity analysis can help rectify this by combining information from individuals with similar phenotypes and looking for overlap in terms of shared genes and underlying functional systems. However, few studies have combined comorbidity analysis with genomic data. We present a computational approach that connects patient phenotypes based on phenotypic co-occurence and uses genomic information related to the patient mutations to assign genes to the phenotypes, which are used to detect enriched functional systems. These phenotypes are clustered using network analysis to obtain functionally coherent phenotype clusters. We applied the approach to the DECIPHER database, containing phenotypic and genomic information for thousands of patients with heterogeneous rare disorders and copy number variants. Validity was demonstrated through overlap with known diseases, co-mention within the biomedical literature, semantic similarity measures, and patient cluster membership. These connected pairs formed multiple phenotype clusters, showing functional coherence, and mapped to genes and systems involved in similar pathological processes. Examples include claudin genes from the 22q11 genomic region associated with a cluster of phenotypes related to DiGeorge syndrome and genes related to the GO term anterior/posterior pattern specification associated with abnormal development. The clusters generated can help with the diagnosis of rare diseases, by suggesting additional phenotypes for a given patient and potential underlying functional systems. Other tools to find causal genes based on phenotype were also investigated. The approach has been implemented as a workflow, named PhenCo, which can be adapted to any set of patients for which phenomic and genomic data is available. Full details of the analysis, including the clusters formed, their constituent functional systems and underlying genes are given. Code to implement the workflow is available from GitHub.


Assuntos
Comorbidade , Predisposição Genética para Doença , Genômica , Doenças Raras/genética , Variações do Número de Cópias de DNA/genética , Bases de Dados Genéticas , Estudos de Associação Genética , Genoma Humano/genética , Genótipo , Humanos , Mutação/genética , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/patologia
2.
Genes (Basel) ; 13(6)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35741843

RESUMO

Network and systemic approaches to studying human pathologies are helping us to gain insight into the molecular mechanisms of and potential therapeutic interventions for human diseases, especially for complex diseases where large numbers of genes are involved. The complex human pathological landscape is traditionally partitioned into discrete "diseases"; however, that partition is sometimes problematic, as diseases are highly heterogeneous and can differ greatly from one patient to another. Moreover, for many pathological states, the set of symptoms (phenotypes) manifested by the patient is not enough to diagnose a particular disease. On the contrary, phenotypes, by definition, are directly observable and can be closer to the molecular basis of the pathology. These clinical phenotypes are also important for personalised medicine, as they can help stratify patients and design personalised interventions. For these reasons, network and systemic approaches to pathologies are gradually incorporating phenotypic information. This review covers the current landscape of phenotype-centred network approaches to study different aspects of human diseases.


Assuntos
Fenótipo , Humanos
3.
Front Mol Biosci ; 8: 635074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046427

RESUMO

Neuromuscular disorders (NMDs) represent an important subset of rare diseases associated with elevated morbidity and mortality whose diagnosis can take years. Here we present a novel approach using systems biology to produce functionally-coherent phenotype clusters that provide insight into the cellular functions and phenotypic patterns underlying NMDs, using the Human Phenotype Ontology as a common framework. Gene and phenotype information was obtained for 424 NMDs in OMIM and 126 NMDs in Orphanet, and 335 and 216 phenotypes were identified as typical for NMDs, respectively. 'Elevated serum creatine kinase' was the most specific to NMDs, in agreement with the clinical test of elevated serum creatinine kinase that is conducted on NMD patients. The approach to obtain co-occurring NMD phenotypes was validated based on co-mention in PubMed abstracts. A total of 231 (OMIM) and 150 (Orphanet) clusters of highly connected co-occurrent NMD phenotypes were obtained. In parallel, a tripartite network based on phenotypes, diseases and genes was used to associate NMD phenotypes with functions, an approach also validated by literature co-mention, with KEGG pathways showing proportionally higher overlap than Gene Ontology and Reactome. Phenotype-function pairs were crossed with the co-occurrent NMD phenotype clusters to obtain 40 (OMIM) and 72 (Orphanet) functionally coherent phenotype clusters. As expected, many of these overlapped with known diseases and confirmed existing knowledge. Other clusters revealed interesting new findings, indicating informative phenotypes for differential diagnosis, providing deeper knowledge of NMDs, and pointing towards specific cell dysfunction caused by pleiotropic genes. This work is an example of reproducible research that i) can help better understand NMDs and support their diagnosis by providing a new tool that exploits existing information to obtain novel clusters of functionally-related phenotypes, and ii) takes us another step towards personalised medicine for NMDs.

4.
Redox Rep ; 22(4): 183-189, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27198616

RESUMO

OBJECTIVE: We studied the modulatory effects of homocysteine pre-treatment on the disulfide reduction capacity of tumor and endothelial cells. METHODS: Human MDA-MB-231 breast carcinoma and bovine aorta endothelial cells were pre-treated for 1-24 hours with 0.5-5 mM homocysteine or homocysteine thiolactone. After washing to eliminate any rest of homocysteine or homocysteine thiolactone, cell redox capacity was determined by using a method for measuring disulfide reduction. RESULTS: Homocysteine pre-treatments for 1-4 hours at a concentration of 0.5-5 mM increase the disulfide reduction capacity of both tumor and endothelial cells. This effect cannot be fully mimicked by either cysteine or homocysteine thiolactone pre-treatments of tumor cells. DISCUSSION: Taken together, our data suggest that homocysteine can behave as an anti-oxidant agent by increasing the anti-oxidant capacity of tumor and endothelial cells.


Assuntos
Homocisteína/análogos & derivados , Neoplasias/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Homocisteína/farmacologia , Humanos , Oxirredução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa