Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Prod ; 85(11): 2557-2569, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36351173

RESUMO

A library of more than 2500 plant extracts was screened for activity on oncogenic signaling in melanoma cells. The ethyl acetate extract from the aerial parts of Artemisia argyi displayed pronounced inhibition of the PI3K/AKT pathway. Active compounds were tracked with the aid of HPLC-based activity profiling, and altogether 21 active compounds were isolated, including one novel dimerosequiterpenoid (1), one new disesquiterpenoid (2), three new guaianolides (3-5), 12 known sesquiterpenoids (6-17), and four known flavonoids (19-22). A new eudesmanolide derivative (13b) was isolated as an artifact formed by methanolysis. Compound 1 is the first adduct comprising a sesquiterpene lactone and a methyl jasmonate moiety. The absolute configurations of compounds 1 and 3-18 were established by comparison of their experimental and calculated ECD spectra. The absolute configuration for 2 was determined by X-ray diffraction analysis. Guaianolide 8 was the most potent sesquiterpene lactone, inhibiting the PI3K/AKT pathway with an IC50 value of 8.9 ± 0.9 µM.


Assuntos
Antineoplásicos , Artemisia , Lactonas , Melanoma , Fosfatidilinositol 3-Quinases , Compostos Fitoquímicos , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Sesquiterpenos , Artemisia/química , Lactonas/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Melanoma/enzimologia , Estrutura Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia
2.
J Nat Prod ; 85(6): 1540-1554, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35640148

RESUMO

The discovery of bioactive natural products remains a time-consuming and challenging task. The ability to link high-confidence metabolite annotations in crude extracts with activity would be highly beneficial to the drug discovery process. To address this challenge, HPLC-based activity profiling and advanced UHPLC-HRMS/MS metabolite profiling for annotation were combined to leverage the information obtained from both approaches on a crude extract scaled down to the submilligram level. This strategy was applied to a subset of an extract library screening aiming to identify natural products inhibiting oncogenic signaling in melanoma. Advanced annotation and data organization enabled the identification of compounds that were likely responsible for the activity in the extracts. These compounds belonged to two different natural product scaffolds, namely, brevipolides from a Hyptis brevipes extract and methoxylated flavonoids identified in three different extracts of Hyptis and Artemisia spp. Targeted isolation of these prioritized compounds led to five brevipolides and seven methoxylated flavonoids. Brevipolide A (1) and 6-methoxytricin (9) were the most potent compounds from each chemical class and displayed AKT activity inhibition with an IC50 of 17.6 ± 1.6 and 4.9 ± 0.2 µM, respectively.


Assuntos
Produtos Biológicos , Hyptis , Melanoma , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Descoberta de Drogas , Flavonoides/farmacologia , Humanos , Hyptis/química , Melanoma/tratamento farmacológico , Extratos Vegetais/química
3.
J Nat Prod ; 85(4): 1006-1017, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35231173

RESUMO

The incidence of melanoma, the most fatal dermatological cancer, has dramatically increased over the last few decades. Modern targeted therapy with kinase inhibitors induces potent clinical responses, but drug resistance quickly develops. Combination therapy improves treatment outcomes. Therefore, novel inhibitors targeting aberrant proliferative signaling in melanoma via the MAPK/ERK and PI3K/AKT pathways are urgently needed. Biosensors were combined that report on ERK/AKT activity with image-based high-content screening and HPLC-based activity profiling. An in-house library of 2576 plant extracts was screened on two melanoma cell lines with different oncogenic mutations leading to pathological ERK/AKT activity. Out of 140 plant extract hits, 44 were selected for HPLC activity profiling. Active thymol derivatives and piperamides from Arnica montana and Piper nigrum were identified that inhibited pathological ERK and/or AKT activity. The pipeline used enabled an efficient identification of natural products targeting oncogenic signaling in melanoma.


Assuntos
Produtos Biológicos , Melanoma , Apoptose , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
FEMS Yeast Res ; 18(4)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771352

RESUMO

Anthocyanins (ACNs) are plant secondary metabolites responsible for most of the red, purple and blue colors of flowers, fruits and vegetables. They are increasingly used in the food and beverage industry as natural alternative to artificial colorants. Production of these compounds by fermentation of microorganisms would provide an attractive alternative. In this study, Saccharomyces cerevisiae was engineered for de novo production of the three basic anthocyanins, as well as the three main trans-flavan-3-ols. Enzymes from different plant sources were screened and efficient variants found for most steps of the biosynthetic pathway. However, the anthocyanidin synthase was identified as a major obstacle to efficient production. In yeast, this enzyme converts the majority of its natural substrates leucoanthocyanidins into the off-pathway flavonols. Nonetheless, de novo biosynthesis of ACNs was shown for the first time in yeast and for the first time in a single microorganism. It provides a framework for optimizing the activity of anthocyanidin synthase and represents an important step towards sustainable industrial production of these highly relevant molecules in yeast.


Assuntos
Antocianinas/biossíntese , Vias Biossintéticas/genética , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Methods Enzymol ; 699: 343-371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942510

RESUMO

Octocorals are the most prolific source of terpenoids in the marine environment, with more than 4000 different compounds known from the phylum to date. However, the biochemical and genetic origin of their production remained elusive until recent studies showed that octocorals encode genes responsible for the biosynthesis of terpenoids in their own chromosomal DNA rather than from microbial symbionts as originally proposed. The identified coral genes include those encoding a new group of class I terpene cyclases (TCs) clustered among other candidate classes of tailoring enzymes. Phylogenetic analyses established octocoral TCs as a monophyletic clade, distinct from TCs of plants, bacteria, and other organisms. The newly discovered group of TCs appears to be ubiquitous in octocorals and is evolutionarily ancient. Given the recent discovery of octocoral terpenoid biochemistry and only limited genomic data presently available, there is substantial potential for discovering new biosynthetic pathways from octocorals for terpene production. The following chapter outlines practical experimental procedures for octocoral DNA and RNA extraction, genome and transcriptome assembly and mining, TC cloning and gene expression, protein purification, and in vitro analyses.


Assuntos
Antozoários , Terpenos , Antozoários/enzimologia , Antozoários/genética , Antozoários/metabolismo , Terpenos/metabolismo , Animais , Filogenia , Clonagem Molecular/métodos , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo
6.
Biomed Pharmacother ; 156: 113754, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265310

RESUMO

The PI3K/AKT and MAPK/ERK pathways are frequently mutated in metastatic melanoma. In a screen of over 2500 plant extracts, the dichloromethane extract of Ericameria nauseosa significantly inhibited oncogenic activity of AKT in MM121224 human melanoma cells. This extract was analyzed by analytical HPLC, and the column effluent was fractionated and tested for activity to generate the so-called HPLC-based activity profile. Compounds eluting within active time-windows of the chromatogram were subsequently isolated in a larger scale to afford 11 flavones (1-11), four flavanones (12-15), two diterpenes (16, 17), and a seco-caryophyllene (18). All isolated compounds were tested for activity, whereby only flavonoids were found active. Of these, flavones were shown to be more active than the flavanones. The most potent flavone was compound 9, that was displaying an IC50 of 14.7 ± 1.4 µM on AKT activity in MM121224 cells. The terpenoids (16-18) were found to be inactive in the assay. Both diterpenes, a grindelic acid derivative (16) and an ent-neo-clerodane (17) were identified as new natural products. Their absolute configuration was established by ECD. Compound 17 is the first description of a clerodane type diterpene in the genus Ericameria.


Assuntos
Asteraceae , Diterpenos Clerodânicos , Flavanonas , Flavonas , Melanoma , Humanos , Flavonoides/farmacologia , Diterpenos Clerodânicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Flavonas/farmacologia , Extratos Vegetais/farmacologia
7.
Cell Rep ; 29(6): 1633-1644.e4, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693901

RESUMO

Certain Gram-negative bacteria use the type VI secretion system (T6SS) to kill and lyse competing bacteria. Here, we show that the T6SS-dependent lysis of prey cells by the naturally competent Acinetobacter baylyi results in the extensive filamentation of a subpopulation of A. baylyi cells. Filamentation is dependent on the release of DNA from the prey and its uptake by the competence system. The analysis of A. baylyi transcriptome and the response of transcriptional reporters suggest that the uptake of DNA results in the upregulation of the SOS response, which often leads to cell-division arrest. Long-term competition between competent and non-competent strains shows that the strain lacking the DNA uptake machinery outcompetes the parental strain only in the presence of the T6SS-dependent lysis of prey cells. Our data suggest that the cost of the induced SOS response may drive the selection of tight regulation or the loss of DNA uptake in bacteria capable of lysing their competitors.


Assuntos
Acinetobacter/citologia , Acinetobacter/metabolismo , DNA Bacteriano/metabolismo , Interações Microbianas/fisiologia , Resposta SOS em Genética , Sistemas de Secreção Tipo VI/metabolismo , Acinetobacter/genética , Transporte Biológico , Divisão Celular , Escherichia coli , Regulação Bacteriana da Expressão Gênica/genética , Interações Microbianas/genética , Regiões Promotoras Genéticas , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa