Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 213, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737190

RESUMO

BACKGROUND: Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS. METHODS: To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry. RESULTS: Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop. CONCLUSION: IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.


Assuntos
Encefalite Transmitida por Carrapatos , Fator Regulador 7 de Interferon , Interferon Tipo I , Animais , Camundongos , Anticorpos , Astrócitos , Sistema Nervoso Central , Fator Regulador 7 de Interferon/genética , Encefalite Transmitida por Carrapatos/imunologia
2.
J Neuroinflammation ; 19(1): 274, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403002

RESUMO

BACKGROUND: Cerebral infection with the protozoan Toxoplasma gondii (T. gondii) is responsible for inflammation of the central nervous system (CNS) contributing to subtle neuronal alterations. Albeit essential for brain parasite control, continuous microglia activation and recruitment of peripheral immune cells entail distinct neuronal impairment upon infection-induced neuroinflammation. PACAP is an endogenous neuropeptide known to inhibit inflammation and promote neuronal survival. Since PACAP is actively transported into the CNS, we aimed to assess the impact of PACAP on the T. gondii-induced neuroinflammation and subsequent effects on neuronal homeostasis. METHODS: Exogenous PACAP was administered intraperitoneally in the chronic stage of T. gondii infection, and brains were isolated for histopathological analysis and determination of pathogen levels. Immune cells from the brain, blood, and spleen were analyzed by flow cytometry, and the further production of inflammatory mediators was investigated by intracellular protein staining as well as expression levels by RT-qPCR. Neuronal and synaptic alterations were assessed on the transcriptional and protein level, focusing on neurotrophins, neurotrophin-receptors and signature synaptic markers. RESULTS: Here, we reveal that PACAP administration reduced the inflammatory foci and the number of apoptotic cells in the brain parenchyma and restrained the activation of microglia and recruitment of monocytes. The neuropeptide reduced the expression of inflammatory mediators such as IFN-γ, IL-6, iNOS, and IL-1ß. Moreover, PACAP diminished IFN-γ production by recruited CD4+ T cells in the CNS. Importantly, PACAP promoted neuronal health via increased expression of the neurotrophin BDNF and reduction of p75NTR, a receptor related to neuronal cell death. In addition, PACAP administration was associated with increased expression of transporters involved in glutamatergic and GABAergic signaling that are particularly affected during cerebral toxoplasmosis. CONCLUSIONS: Together, our findings unravel the beneficial effects of exogenous PACAP treatment upon infection-induced neuroinflammation, highlighting the potential implication of neuropeptides to promote neuronal survival and minimize synaptic prejudice.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Doenças Neuroinflamatórias , Toxoplasmose/complicações , Toxoplasmose/tratamento farmacológico , Fatores de Crescimento Neural , Inflamação/tratamento farmacológico , Mediadores da Inflamação
3.
Glia ; 69(1): 182-200, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32865286

RESUMO

In the advanced stages of Alzheimer's disease (AD), microglia are transformed to an activated phenotype with thickened and retracted processes, migrate to the site of amyloid-beta (Aß) plaques, and proliferate. In the early stages of AD, it is still poorly understood whether the microglial function is altered and which factors may regulate these changes. Here, we focused on studying microglia in the retrosplenial cortex (RSC) in 3- to 4-month-old 5xFAD mice as a transgenic mouse model of AD. At this age, there are neither Aß plaques, nor activation of microglia, nor dysregulation in the expression of genes encoding major extracellular matrix (ECM) molecules or extracellular proteases in the RSC. Still, histochemical evaluation of the fine structure of neural ECM revealed increased levels of Wisteria floribunda agglutinin labeling in holes of perineuronal nets and changes in the perimeter of ECM barriers around the holes in 5xFAD mice. Two-photon vital microscopy demonstrated normal morphology and resting motility of microglia but strongly diminished number of microglial cells that migrated to the photolesion site in 5xFAD mice. Enzymatic digestion of ECM by chondroitinase ABC (ChABC) ameliorated this defect. Accordingly, the characterization of cell surface markers by flow cytometry demonstrated altered expression of microglial CD45. Moreover, ChABC treatment reduced the invasion of myeloid-derived mononuclear cells into the RSC of 5xFAD mice. Hence, the migration of both microglia and myeloid cells is altered during the early stages of amyloidosis and can be restored at least partially by the attenuation of the ECM.


Assuntos
Amiloidose , Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Matriz Extracelular , Camundongos , Camundongos Transgênicos , Microglia , Placa Amiloide
4.
Glia ; 67(1): 193-211, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597659

RESUMO

Neurotrophins mediate neuronal growth, differentiation, and survival via tropomyosin receptor kinase (Trk) or p75 neurotrophin receptor (p75NTR ) signaling. The p75NTR is not exclusively expressed by neurons but also by certain immune cells, implying a role for neurotrophin signaling in the immune system. In this study, we investigated the effect of p75NTR on innate immune cell behavior and on neuronal morphology upon chronic Toxoplasma gondii (T. gondii) infection-induced neuroinflammation. Characterization of the immune cells in the periphery and central nervous system (CNS) revealed that innate immune cell subsets in the brain upregulated p75NTR upon infection in wild-type mice. Although cell recruitment and phagocytic capacity of p75NTRexonIV knockout (p75-/- ) mice were not impaired, the activation status of resident microglia and recruited myeloid cell subsets was altered. Importantly, recruited mononuclear cells in brains of infected p75-/- mice upregulated the production of the cytokines interleukin (IL)-10, IL-6 as well as IL-1α. Protein levels of proBDNF, known to negatively influence neuronal morphology by binding p75NTR , were highly increased upon chronic infection in the brain of wild-type and p75-/- mice. Moreover, upon infection the activated immune cells contributed to the proBDNF release. Notably, the neuroinflammation-induced changes in spine density were rescued in the p75-/- mice. In conclusion, these findings indicate that neurotrophin signaling via the p75NTR affects innate immune cell behavior, thus, influencing the structural plasticity of neurons under inflammatory conditions.


Assuntos
Leucócitos Mononucleares/fisiologia , Neurônios/fisiologia , Receptor de Fator de Crescimento Neural/fisiologia , Toxoplasma , Toxoplasmose/imunologia , Animais , Feminino , Imunidade Inata/fisiologia , Inflamação/imunologia , Inflamação/patologia , Leucócitos Mononucleares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Toxoplasmose/patologia
5.
J Neuroinflammation ; 16(1): 159, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31352901

RESUMO

BACKGROUND: It has become increasingly evident that the immune and nervous systems are closely intertwined, relying on one another during regular homeostatic conditions. Prolonged states of imbalance between neural and immune homeostasis, such as chronic neuroinflammation, are associated with a higher risk for neural damage. Toxoplasma gondii is a highly successful neurotropic parasite causing persistent subclinical neuroinflammation, which is associated with psychiatric and neurodegenerative disorders. Little is known, however, by what means neuroinflammation and the associated neural impairment can be modulated by peripheral inflammatory processes. METHODS: Expression of immune and synapse-associated genes was assessed via quantitative real-time PCR to investigate how T. gondii infection-induced chronic neuroinflammation and associated neuronal alterations can be reshaped by a subsequent acute intestinal nematode co-infection. Immune cell subsets were characterized via flow cytometry in the brain of infected mice. Sulfadiazine and interferon-γ-neutralizing antibody were applied to subdue neuroinflammation. RESULTS: Neuroinflammation induced by T. gondii infection of mice was associated with increased microglia activation, recruitment of immune cells into the brain exhibiting Th1 effector functions, and enhanced production of Th1 and pro-inflammatory molecules (IFN-γ, iNOS, IL-12, TNF, IL-6, and IL-1ß) following co-infection with Heligmosomoides polygyrus. The accelerated cerebral Th1 immune response resulted in enhanced T. gondii removal but exacerbated the inflammation-related decrease of synapse-associated gene expression. Synaptic proteins EAAT2 and GABAAα1, which are involved in the excitation/inhibition balance in the CNS, were affected in particular. These synaptic alterations were partially recovered by reducing neuroinflammation indirectly via antiparasitic treatment and especially by application of IFN-γ-neutralizing antibody. Impaired iNOS expression following IFN-γ neutralization directly affected EAAT2 and GABAAα1 signaling, thus contributing to the microglial regulation of neurons. Besides, reduced CD36, TREM2, and C1qa gene expression points toward inflammation induced synaptic pruning as a fundamental mechanism. CONCLUSION: Our results suggest that neuroimmune responses following chronic T. gondii infection can be modulated by acute enteric nematode co-infection. While consecutive co-infection promotes parasite elimination in the CNS, it also adversely affects gene expression of synaptic proteins, via an IFN-γ-dependent manner.


Assuntos
Encéfalo/metabolismo , Interferon gama/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Infecções por Strongylida/metabolismo , Toxoplasmose/metabolismo , Animais , Encéfalo/parasitologia , Coinfecção , Ativação de Macrófagos/fisiologia , Camundongos , Microglia/parasitologia , Nematospiroides dubius , Neurônios/parasitologia , Sinapses/metabolismo , Sinapses/parasitologia , Toxoplasma
6.
Cell Rep ; 38(13): 110564, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354032

RESUMO

Cerebral infections are restrained by a complex interplay of tissue-resident and recruited peripheral immune cells. Whether innate lymphoid cells (ILCs) are involved in the orchestration of the neuroinflammatory dynamics is not fully understood. Here, we demonstrate that ILCs accumulate in the cerebral parenchyma, the choroid plexus, and the meninges in the onset of cerebral Toxoplasma gondii infection. Antibody-mediated depletion of conventional natural killer (cNK) cells and ILC1s in the early stage of infection results in diminished cytokine and chemokine expression and increased cerebral parasite burden. Using cNK- and ILC1-deficient murine models, we demonstrate that exclusively the lack of ILC1s affects cerebral immune responses. In summary, our results provide evidence that ILC1s are an early source of IFN-γ and TNF in response to cerebral T. gondii infection, thereby inducing host defense factors and initiating the development of a neuroinflammatory response.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Imunidade Inata , Células Matadoras Naturais , Camundongos , Doenças Neuroinflamatórias
7.
mBio ; 12(5): e0177621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34700379

RESUMO

Influenza A virus (IAV) causes respiratory tract disease and is responsible for seasonal and reoccurring epidemics affecting all age groups. Next to typical disease symptoms, such as fever and fatigue, IAV infection has been associated with behavioral alterations presumably contributing to the development of major depression. Previous experiments using IAV/H1N1 infection models have shown impaired hippocampal neuronal morphology and cognitive abilities, but the underlying pathways have not been fully described. In this study, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes ample peripheral immune response followed by a temporary blood-brain barrier disturbance. Although histological examination did not reveal obvious pathological processes in the brains of IAV-infected mice, detailed multidimensional flow cytometric characterization of immune cells uncovered subtle alterations in the activation status of microglial cells. More specifically, we detected an altered expression pattern of major histocompatibility complex classes I and II, CD80, and F4/80 accompanied by elevated mRNA levels of CD36, CD68, C1QA, and C3, suggesting evolved synaptic pruning. To closer evaluate how these profound changes affect synaptic balance, we established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry. The introduction of this novel technique enabled us to simultaneously quantify the abundance of pre- and postsynapses from distinct brain regions. Our data reveal a significant reduction of VGLUT1 in excitatory presynaptic terminals in the cortex and hippocampus, identifying a subtle dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations. IMPORTANCE Influenza A virus (IAV) causes mainly respiratory tract disease with fever and fatigue but is also associated with behavioral alterations in humans. Here, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes peripheral immune response followed by a temporary blood-brain barrier disturbance. Characterization of immune cells uncovered subtle alterations in the activation status of microglia cells that might reshape neuronal synapses. We established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry to more closely study the synapses. Thus, we detected a specific dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A , Microglia/metabolismo , Transmissão Sináptica/fisiologia , Animais , Encéfalo/patologia , Quimiocinas , Citocinas , Expressão Gênica , Humanos , Inflamação/virologia , Vírus da Influenza A/genética , Influenza Humana/virologia , Camundongos , Infecções por Orthomyxoviridae/virologia
8.
Front Immunol ; 12: 619465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968021

RESUMO

Cell survival and function critically relies on the fine-tuned balance of protein synthesis and degradation. In the steady state, the standard proteasome is sufficient to maintain this proteostasis. However, upon inflammation, the sharp increase in protein production requires additional mechanisms to limit protein-associated cellular stress. Under inflammatory conditions and the release of interferons, the immunoproteasome (IP) is induced to support protein processing and recycling. In antigen-presenting cells constitutively expressing IPs, inflammation-related mechanisms contribute to the formation of MHC class I/II-peptide complexes, which are required for the induction of T cell responses. The control of Toxoplasma gondii infection relies on Interferon-γ (IFNγ)-related T cell responses. Whether and how the IP affects the course of anti-parasitic T cell responses along the infection as well as inflammation of the central nervous system is still unknown. To answer this question we used triple knockout (TKO) mice lacking the 3 catalytic subunits of the immunoproteasome (ß1i/LMP2, ß2i/MECL-1 and ß5i/LMP7). Here we show that the numbers of dendritic cells, monocytes and CD8+ T cells were reduced in Toxoplasma gondii-infected TKO mice. Furthermore, impaired IFNγ, TNF and iNOS production was accompanied by dysregulated chemokine expression and altered immune cell recruitment to the brain. T cell differentiation was altered, apoptosis rates of microglia and monocytes were elevated and STAT3 downstream signaling was diminished. Consequently, anti-parasitic immune responses were impaired in TKO mice leading to elevated T. gondii burden and prolonged neuroinflammation. In summary we provide evidence for a critical role of the IP subunits ß1i/LMP2, ß2i/MECL-1 and ß5i/LMP7 for the control of cerebral Toxoplasma gondii infection and subsequent neuroinflammation.


Assuntos
Cisteína Endopeptidases/metabolismo , Imunomodulação , Complexo de Endopeptidases do Proteassoma/metabolismo , Toxoplasmose Cerebral/etiologia , Toxoplasmose Cerebral/metabolismo , Animais , Apoptose , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Camundongos , Transdução de Sinais , Toxoplasma
9.
Artigo em Inglês | MEDLINE | ID: mdl-31192159

RESUMO

Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is an endogenous neuropeptide with distinct functions including the regulation of inflammatory processes. PACAP is able to modify the immune response by directly regulating macrophages and monocytes inhibiting the production of inflammatory cytokines, chemokines and free radicals. Here, we analyzed the effect of exogenous PACAP on peripheral immune cell subsets upon acute infection with the parasite Toxoplasma gondii (T. gondii). PACAP administration was followed by diminished innate immune cell recruitment to the peritoneal cavity of T. gondii-infected mice. PACAP did not directly interfere with parasite replication, instead, indirectly reduced parasite burden in mononuclear cell populations by enhancing their phagocytic capacity. Although proinflammatory cytokine levels were attenuated in the periphery upon PACAP treatment, interleukin (IL)-10 and Transforming growth factor beta (TGF-ß) remained stable. While PACAP modulated VPAC1 and VPAC2 receptors in immune cells upon binding, it also increased their expression of brain-derived neurotrophic factor (BDNF). In addition, the expression of p75 neurotrophin receptor (p75NTR) on Ly6Chi inflammatory monocytes was diminished upon PACAP administration. Our findings highlight the immunomodulatory effect of PACAP on peripheral immune cell subsets during acute Toxoplasmosis, providing new insights about host-pathogen interaction and the effects of neuropeptides during inflammation.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunomodulação , Neuropeptídeos/imunologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/imunologia , Toxoplasmose/imunologia , Animais , Antígenos Ly , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Imunidade Inata , Inflamação , Interleucina-10 , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Toxoplasma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa