Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 157, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918832

RESUMO

BACKGROUND: The life-threatening pathogen Leptospira interrogans is the most common agent of leptospirosis, an emerging zoonotic disease. However, little is known about the strains that are currently circulating worldwide due to the fastidious nature of the bacteria and the difficulty to isolate cultures. In addition, the paucity of bacteria in blood and other clinical samples has proven to be a considerable challenge for directly genotyping the agent of leptospirosis directly from patient material. Our understanding of the genetic diversity of strains during human infection is therefore limited. METHODS: Here, we carried out hybridization capture followed by Illumina sequencing of the core genome directly from 20 clinical samples that were PCR positive for pathogenic Leptospira to elucidate the genetic diversity of currently circulating Leptospira strains in mainland France. RESULTS: Capture with RNA probes covering the L. interrogans core genome resulted in a 72 to 13,000-fold increase in pathogen reads relative to standard sequencing without capture. Variant analysis of the genomes sequenced from the biological samples using 273 Leptospira reference genomes was then carried out to determine the genotype of the infecting strain. For samples with sufficient coverage (19/20 samples with coverage > 8×), we could unambiguously identify L. interrogans serovars Icterohaemorrhagiae and Copenhageni (14 samples), L. kirschneri serovar Grippotyphosa (4 samples), and L. interrogans serovar Pyrogenes (1 sample) as the infecting strains. CONCLUSIONS: We obtained high-quality genomic data with suitable coverage for confident core genome genotyping of the agent of leptospirosis for most of our clinical samples. The recovery of the genome of the serovars Icterohaemorrhagiae and Copenhageni directly from multiple clinical samples revealed low adaptive diversification of the core genes during human infection. The ability to generate culture-free genomic data opens new opportunities for better understanding of the epidemiology of this fastidious pathogen and pathogenesis of this neglected disease.


Assuntos
Leptospira interrogans , Leptospira , Leptospirose , Animais , Humanos , Leptospira interrogans/genética , Genótipo , Leptospirose/epidemiologia , Zoonoses , Leptospira/genética
3.
Res Microbiol ; 174(3): 104025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587858

RESUMO

Candida albicans is a major fungal pathogen of humans. Although its genome has been sequenced more than two decades ago, there are still over 4300 uncharacterized C. albicans genes. We previously generated an ORFeome as well as a collection of destination vectors to facilitate overexpression of C. albicans ORFs. Here, we report the construction of ∼2500 overexpression mutants and their evaluation by in vitro spotting on rich medium and in a liquid pool experiment in rich medium, allowing the identification of genes whose overexpression has a fitness cost. The candidates were further validated at the individual strain level. This new resource allows large-scale screens in different growth conditions to be performed routinely. Altogether, based on the concept of identifying functionally related genes by cluster analysis, the availability of this overexpression mutant collection will facilitate the characterization of gene functions in C. albicans.


Assuntos
Candida albicans , Genoma Fúngico , Candida albicans/genética , Proteínas Fúngicas/genética
4.
PLoS One ; 16(12): e0260981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34898610

RESUMO

Carbon Storage Regulator A (CsrA) is a well-characterized post-transcriptional global regulator that plays a critical role in response to environmental changes in many bacteria. CsrA has been reported to regulate several metabolic pathways, motility, biofilm formation, and virulence-associated genes. The role of csrA in Leptospira spp., which are able to survive in different environmental niches and infect a wide variety of reservoir hosts, has not been characterized. To investigate the role of csrA as a gene regulator in Leptospira, we generated a L. biflexa csrA deletion mutant (ΔcsrA) and csrA overexpressing Leptospira strains. The ΔcsrA L. biflexa displayed poor growth under starvation conditions. RNA sequencing revealed that in rich medium only a few genes, including the gene encoding the flagellar filament protein FlaB3, were differentially expressed in the ΔcsrA mutant. In contrast, 575 transcripts were differentially expressed when csrA was overexpressed in L. biflexa. Electrophoretic mobility shift assay (EMSA) confirmed the RNA-seq data in the ΔcsrA mutant, showing direct binding of recombinant CsrA to flaB3 mRNA. In the pathogen L. interrogans, we were not able to generate a csrA mutant. We therefore decided to overexpress csrA in L. interrogans. In contrast to the overexpressing strain of L. biflexa, the overexpressing L. interrogans strain had poor motility on soft agar. The overexpressing strain of L. interrogans also showed significant upregulation of the flagellin flaB1, flaB2, and flaB4. The interaction of L. interrogans rCsrA and flaB4 was confirmed by EMSA. Our results demonstrated that CsrA may function as a global regulator in Leptospira spp. under certain conditions that cause csrA overexpression. Interestingly, the mechanisms of action and gene targets of CsrA may be different between non-pathogenic and pathogenic Leptospira strains.


Assuntos
Proteínas de Bactérias/fisiologia , Carbono/metabolismo , Leptospira/fisiologia , Proteínas de Ligação a RNA/fisiologia , Alelos , Proteínas de Bactérias/genética , Deleção de Genes , Genes Bacterianos , Leptospira/genética , Fenótipo , Proteínas de Ligação a RNA/genética
5.
Antiviral Res ; 188: 105016, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33444703

RESUMO

ABMA and its analogue DABMA are two molecules of the adamantane family known to perturbate the endosomal pathway and to inhibit cell infection of several RNA and DNA viruses. Their activity against Rabies Virus (RABV) infection has already been demonstrated in vitro. (Wu et al., 2017, 2019). Here, we describe in more details their mechanism of action by comparison to Arbidol (umifenovir) and Ribavirin, two broad spectrum antivirals against emerging viruses such as Lassa, Ebola, influenza and Hantaan viruses. ABMA and DABMA, delivered 2 h pre-infection, inhibit RABV infection in vitro with an EC50 of 7.8 µM and 14 µM, respectively. They act at post-entry, by causing RABV accumulation within the endosomal compartment and DABMA specifically diminishes the expression of the GTPase Rab7a controlling the fusion of early endosomes to late endosomes or lysosomes. This may suggest that ABMA and DABMA act at different stages of the late endosomal pathway as supported by their different profile of synergy/antagonism with the fusion inhibitor Arbidol. This difference is further confirmed by the RABV mutants induced by successive passages under increasing selective pressure showing a particular involvement of the viral G protein in the DABMA inhibition while ABMA inhibition induces less mutations dispersed in the M, G and L viral proteins. These results suggest new therapeutic perspectives against rabies.


Assuntos
Adamantano/farmacologia , Antivirais/farmacologia , Benzilaminas/farmacologia , Vírus da Raiva/efeitos dos fármacos , Animais , Linhagem Celular , Farmacorresistência Viral , Sinergismo Farmacológico , Endossomos/metabolismo , Indóis/farmacologia , Mutação , Vírus da Raiva/genética , Vírus da Raiva/fisiologia , Ribavirina/farmacologia , Proteínas Virais/genética , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa