Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 102978, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739949

RESUMO

The mitochondrial phospholipid cardiolipin (CL) is critical for numerous essential biological processes, including mitochondrial dynamics and energy metabolism. Mutations in the CL remodeling enzyme TAFAZZIN cause Barth syndrome, a life-threatening genetic disorder that results in severe physiological defects, including cardiomyopathy, skeletal myopathy, and neutropenia. To study the molecular mechanisms whereby CL deficiency leads to skeletal myopathy, we carried out transcriptomic analysis of the TAFAZZIN-knockout (TAZ-KO) mouse myoblast C2C12 cell line. Our data indicated that cardiac and muscle development pathways are highly decreased in TAZ-KO cells, consistent with a previous report of defective myogenesis in this cell line. Interestingly, the muscle transcription factor myoblast determination protein 1 (MyoD1) is significantly repressed in TAZ-KO cells and TAZ-KO mouse hearts. Exogenous expression of MyoD1 rescued the myogenesis defects previously observed in TAZ-KO cells. Our data suggest that MyoD1 repression is caused by upregulation of the MyoD1 negative regulator, homeobox protein Mohawk, and decreased Wnt signaling. Our findings reveal, for the first time, that CL metabolism regulates muscle differentiation through MyoD1 and identify the mechanism whereby MyoD1 is repressed in CL-deficient cells.


Assuntos
Síndrome de Barth , Cardiolipinas , Proteína MyoD , Animais , Camundongos , Aciltransferases/genética , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Camundongos Knockout , Músculos/metabolismo , Fatores de Transcrição/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa