Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 120(8): 1318-1325, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28069694

RESUMO

RATIONALE: Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact. OBJECTIVE: Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human-induced pluripotent stem cells to generate a human-induced pluripotent stem cell-derived cardiac muscle patch (hCMP), which was subsequently evaluated in a murine model of myocardial infarction. METHODS AND RESULTS: The scaffold was seeded with ≈50 000 human-induced pluripotent stem cell-derived cardiomyocytes, smooth muscle cells, and endothelial cells (in a 2:1:1 ratio) to generate the hCMP, which began generating calcium transients and beating synchronously within 1 day of seeding; the speeds of contraction and relaxation and the peak amplitudes of the calcium transients increased significantly over the next 7 days. When tested in mice with surgically induced myocardial infarction, measurements of cardiac function, infarct size, apoptosis, both vascular and arteriole density, and cell proliferation at week 4 after treatment were significantly better in animals treated with the hCMPs than in animals treated with cell-free scaffolds, and the rate of cell engraftment in hCMP-treated animals was 24.5% at week 1 and 11.2% at week 4. CONCLUSIONS: Thus, the novel multiphoton-excited 3D printing technique produces extracellular matrix-based scaffolds with exceptional resolution and fidelity, and hCMPs fabricated with these scaffolds may significantly improve recovery from ischemic myocardial injury.


Assuntos
Comunicação Celular , Diferenciação Celular , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Endoteliais/transplante , Matriz Extracelular/ultraestrutura , Frequência Cardíaca , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos Endogâmicos NOD , Camundongos SCID , Contração Miocárdica , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/transplante , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/transplante , Fenótipo , Recuperação de Função Fisiológica , Regeneração , Fatores de Tempo , Transfecção , Função Ventricular Esquerda
2.
Sci Rep ; 8(1): 10505, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002456

RESUMO

Observing dynamic micro-scale phenomena occurring at millisecond time scales, such as organism activity, micron particle flows, or any opaque object observation, requires volumetric microscopy techniques able to achieve high data acquisition rates while maintaining contrast so that measurement of fine micro-scale features is possible. In realizing this purpose, the light-field (LF) technique has already been used on three-dimensional (3D) scene capturing and even for microscopic visualizations. In studying the ability and feasibility of 3D surface morphology reconstruction via LF microscopy, we adopted a lab-made LF microscope and integrated a four-dimensional Fourier slice algorithm and a Markov random field propagation algorithm. Furthermore, for numerical comparison and quantized analysis, the Tenengrad function was utilized to calculate the average contrast of the region of interest. Reflective US Air Force targets and 3D photolithography-made micro-scaffolds coated with 50 nm nickel thin films were adopted for system alignment and calibration. The experimental results demonstrate that the developed LF microscope with the signal processing algorithms can observe the 3D surface morphology of opaque microstructures with one snapshot, and has been preliminary applied to Brownian motion observation with 30 Hz volumetric image rate.

3.
Biomed Opt Express ; 6(2): 480-90, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25780738

RESUMO

In this study, three-dimensional (3D) multi-component microstructures were precisely fabricated via multiphoton excited photochemistry using a femtosecond laser direct-writing system with proposed repetition positioning and vector scanning techniques. Extracellular matrix (ECM) proteins, such as fibronectin (FN), are difficult to stack and form 3D structures larger than several-hundred microns in height due to the nature of their protein structure. Herein, to fabricate complex 3D microstructures with FN, a 3D scaffold was designed and formed from bovine serum albumin (BSA), after which human FN was inserted at specific locations on the BSA scaffold; in this manner, the fabricated ECM microstructure can guide cells in a 3D environment. A human breast cancer cell line, MDA-MB-231, was used to investigate the behavior of cell migration and adhesion on the fabricated human FN and BSA protein structures. Experimental results indicate that many cells are not able to attach or climb on a 3D structure's inclined plane without FN support; hence, the influence of cell growth in a 3D context with FN should being taken into consideration. This 3D multi-protein fabrication technique holds potential for cell studies in designed complex 3D ECM scaffolds.

4.
Biomed Opt Express ; 5(8): 2526-36, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25136483

RESUMO

In this study, the light diffraction of temporal focusing multiphoton excitation microscopy (TFMPEM) and the excitation patterning of nonlinear structured-illumination microscopy (NSIM) can be simultaneously and accurately implemented via a single high-resolution digital micromirror device. The lateral and axial spatial resolutions of the TFMPEM are remarkably improved through the second-order NSIM and projected structured light, respectively. The experimental results demonstrate that the lateral and axial resolutions are enhanced from 397 nm to 168 nm (2.4-fold) and from 2.33 µm to 1.22 µm (1.9-fold), respectively, in full width at the half maximum. Furthermore, a three-dimensionally rendered image of a cytoskeleton cell featuring ~25 nm microtubules is improved, with other microtubules at a distance near the lateral resolution of 168 nm also able to be distinguished.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa