Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(9): 3261-3279, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35666176

RESUMO

Like other complex multicellular organisms, plants are composed of different cell types with specialized shapes and functions. For example, most laminar leaves consist of multiple photosynthetic cell types. These cell types include the palisade mesophyll, which typically forms one or more cell layers on the adaxial side of the leaf. Despite their importance for photosynthesis, we know little about how palisade cells differ at the molecular level from other photosynthetic cell types. To this end, we have used a combination of cell-specific profiling using fluorescence-activated cell sorting and single-cell RNA-sequencing methods to generate a transcriptional blueprint of the palisade mesophyll in Arabidopsis thaliana leaves. We find that despite their unique morphology, palisade cells are otherwise transcriptionally similar to other photosynthetic cell types. Nevertheless, we show that some genes in the phenylpropanoid biosynthesis pathway have both palisade-enriched expression and are light-regulated. Phenylpropanoid gene activity in the palisade was required for production of the ultraviolet (UV)-B protectant sinapoylmalate, which may protect the palisade and/or other leaf cells against damaging UV light. These findings improve our understanding of how different photosynthetic cell types in the leaf can function uniquely to optimize leaf performance, despite their transcriptional similarities.


Assuntos
Arabidopsis , Raios Ultravioleta , Luz , Fotossíntese , Folhas de Planta
2.
Genes Dev ; 25(3): 232-7, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21289069

RESUMO

Receptor tyrosine kinases control many critical processes in metazoans, but these enzymes appear to be absent in plants. Recently, two Arabidopsis receptor kinases--BRASSINOSTEROID INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED KINASE1 (BAK1), the receptor and coreceptor for brassinosteroids--were shown to autophosphorylate on tyrosines. However, the cellular roles for tyrosine phosphorylation in plants remain poorly understood. Here, we report that the BRI1 KINASE INHIBITOR 1 (BKI1) is tyrosine phosphorylated in response to brassinosteroid perception. Phosphorylation occurs within a reiterated [KR][KR] membrane targeting motif, releasing BKI1 into the cytosol and enabling formation of an active signaling complex. Our work reveals that tyrosine phosphorylation is a conserved mechanism controlling protein localization in all higher organisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ativação Enzimática , Proteínas Quinases/metabolismo , Tirosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência Conservada , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência
3.
Nature ; 474(7352): 467-71, 2011 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-21666665

RESUMO

Polyhydroxylated steroids are regulators of body shape and size in higher organisms. In metazoans, intracellular receptors recognize these molecules. Plants, however, perceive steroids at membranes, using the membrane-integral receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1). Here we report the structure of the Arabidopsis thaliana BRI1 ligand-binding domain, determined by X-ray diffraction at 2.5 Å resolution. We find a superhelix of 25 twisted leucine-rich repeats (LRRs), an architecture that is strikingly different from the assembly of LRRs in animal Toll-like receptors. A 70-amino-acid island domain between LRRs 21 and 22 folds back into the interior of the superhelix to create a surface pocket for binding the plant hormone brassinolide. Known loss- and gain-of-function mutations map closely to the hormone-binding site. We propose that steroid binding to BRI1 generates a docking platform for a co-receptor that is required for receptor activation. Our findings provide insight into the activation mechanism of this highly expanded family of plant receptors that have essential roles in hormone, developmental and innate immunity signalling.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Colestanóis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Esteroides Heterocíclicos/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Sítios de Ligação , Brassinosteroides , Colestanóis/química , Cristalografia por Raios X , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Reguladores de Crescimento de Plantas/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Esteroides Heterocíclicos/química , Relação Estrutura-Atividade
4.
Nat Chem Biol ; 7(11): 766-8, 2011 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-21964459

RESUMO

Cytokinins are classic hormones that orchestrate plant growth and development and the integrity of stem cell populations. Cytokinin receptors are eukaryotic sensor histidine kinases that are activated by both naturally occurring adenine-type cytokinins and urea-based synthetic compounds. Crystal structures of the Arabidopsis thaliana histidine kinase 4 sensor domain in complex with different cytokinin ligands now rationalize the hormone-binding specificity of the receptor and may spur the design of new cytokinin ligands.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Citocininas/metabolismo , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Domínio Catalítico , Citocininas/química , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Moleculares , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
5.
Curr Biol ; 33(15): 3257-3264.e4, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37437572

RESUMO

How the Venus flytrap (Dionaea muscipula) evolved the remarkable ability to sense, capture, and digest animal prey for nutrients has long puzzled the scientific community.1 Recent genome and transcriptome sequencing studies have provided clues to the genes thought to play a role in these tasks.2,3,4,5 However, proving a causal link between these and any aspect of the plant's hunting behavior has been challenging due to the genetic intractability of this non-model organism. Here, we use CRISPR-Cas9 methods to generate targeted modifications in the Venus flytrap genome. The plant detects prey using touch-sensitive trigger hairs located on its bilobed leaves.6 Upon bending, these hairs convert mechanical touch signals into changes in the membrane potential of sensory cells, leading to rapid closure of the leaf lobes to ensnare the animal.7 Here, we generate mutations in trigger-hair-expressed MscS-like (MSL)-family mechanosensitive ion channel genes FLYCATCHER1 (FLYC1) and FLYCATCHER2 (FLYC2)5 and find that double-mutant plants have a reduced leaf-closing response to mechanical ultrasound stimulation. While we cannot exclude off-target effects of the CRISPR-Cas9 system, our genetic analysis is consistent with these and other functionally redundant mechanosensitive ion channels acting together to generate the sensory system necessary for prey detection.


Assuntos
Droseraceae , Animais , Droseraceae/genética , Planta Carnívora , Transdução de Sinais , Canais Iônicos/genética , Folhas de Planta/fisiologia
6.
Elife ; 102021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724187

RESUMO

In response to touch, some carnivorous plants such as the Venus flytrap have evolved spectacular movements to capture animals for nutrient acquisition. However, the molecules that confer this sensitivity remain unknown. We used comparative transcriptomics to show that expression of three genes encoding homologs of the MscS-Like (MSL) and OSCA/TMEM63 family of mechanosensitive ion channels are localized to touch-sensitive trigger hairs of Venus flytrap. We focus here on the candidate with the most enriched expression in trigger hairs, the MSL homolog FLYCATCHER1 (FLYC1). We show that FLYC1 transcripts are localized to mechanosensory cells within the trigger hair, transfecting FLYC1 induces chloride-permeable stretch-activated currents in naïve cells, and transcripts coding for FLYC1 homologs are expressed in touch-sensing cells of Cape sundew, a related carnivorous plant of the Droseraceae family. Our data suggest that the mechanism of prey recognition in carnivorous Droseraceae evolved by co-opting ancestral mechanosensitive ion channels to sense touch.


Assuntos
Planta Carnívora/genética , Droseraceae/genética , Canais Iônicos/genética , Proteínas de Plantas/genética , Tato , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Planta Carnívora/metabolismo , Droseraceae/metabolismo , Genes de Plantas , Canais Iônicos/metabolismo , Transporte de Íons/genética , Proteínas de Plantas/metabolismo , Transcriptoma
7.
Curr Biol ; 15(5): 436-40, 2005 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-15753038

RESUMO

Most organs of flowering plants develop postembryonically from groups of pluripotent cells called meristems [1]. The shoot apical meristem (SAM) is specified by two complementary pathways [2-4]. SHOOT MERISTEMLESS (STM; [5]) defines the entire SAM region [6]. WUSCHEL (WUS), on the other hand, functions in a more restricted set of cells to promote stem-cell fate and is regulated by the CLAVATA genes in a negative feedback loop [7-10]. In contrast, little is known about how the growth of the SAM, which increases in size during vegetative development [11], is regulated. We have characterized STIMPY (STIP; also called WOX9 [12]), a homeobox gene required for the growth of the vegetative SAM, in part by positively regulating WUS expression. In addition, STIP is required in several other aerial organs and the root. What sets STIP apart from STM and WUS is that stip mutants can be fully rescued by stimulating the entry into the cell cycle with sucrose. Therefore, STIP is likely to act in all these tissues by maintaining cell division and preventing premature differentiation. Taken together, our findings suggest that STIP identifies a new genetic pathway integrating developmental signals with cell-cycle control.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes Homeobox/fisiologia , Proteínas de Homeodomínio/metabolismo , Meristema/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Divisão Celular/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Hibridização In Situ , Meristema/genética , Microscopia Confocal , Mutação/genética
8.
Genetics ; 160(2): 683-96, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11861571

RESUMO

We have mapped quantitative trait loci (QTL) responsible for natural variation in light and hormone response between the Cape Verde Islands (Cvi) and Landsberg erecta (Ler) accessions of Arabidopsis thaliana using recombinant inbred lines (RILs). Hypocotyl length was measured in four light environments: white, blue, red, and far-red light and in the dark. In addition, white light plus gibberellin (GA) and dark plus the brassinosteroid biosynthesis inhibitor brassinazole (BRZ) were used to detect hormone effects. Twelve QTL were identified that map to loci not previously known to affect light response, as well as loci where candidate genes have been identified from known mutations. Some QTL act in all environments while others show genotype-by-environment interaction. A global threshold was established to identify a significant epistatic interaction between two loci that have few main effects of their own. LIGHT1, a major QTL, has been confirmed in a near isogenic line (NIL) and maps to a new locus with effects in all light environments. The erecta mutation can explain the effect of the HYP2 QTL in the blue, BRZ, and dark environments, but not in far-red. LIGHT2, also confirmed in an NIL, has effects in white and red light and shows interaction with GA. The phenotype and map position of LIGHT2 suggest the photoreceptor PHYB as a candidate gene. Natural variation in light and hormone response thus defines both new genes and known genes that control light response in wild accessions.


Assuntos
Arabidopsis/genética , Células Fotorreceptoras , Reguladores de Crescimento de Plantas/genética , Característica Quantitativa Herdável , Fatores de Transcrição , Arabidopsis/fisiologia , Proteínas de Arabidopsis , Variação Genética , Luz , Fitocromo/genética , Fitocromo/fisiologia , Fitocromo B , Reguladores de Crescimento de Plantas/fisiologia
9.
PLoS One ; 4(2): e4318, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19183806

RESUMO

BACKGROUND: Even when phenotypic differences are large between natural or domesticated strains, the underlying genetic basis is often complex, and causal genomic regions need to be identified by quantitative trait locus (QTL) mapping. Unfortunately, QTL positions typically have large confidence intervals, which can, for example, lead to one QTL being masked by another, when two closely linked loci are detected as a single QTL. One strategy to increase the power of precisely localizing small effect QTL, is the use of an intercross approach before inbreeding to produce Advanced Intercross RILs (AI-RILs). METHODOLOGY/PRINCIPAL FINDINGS: We present two new AI-RIL populations of Arabidopsis thaliana genotyped with an average intermarker distance of 600 kb. The advanced intercrossing design led to expansion of the genetic map in the two populations, which contain recombination events corresponding to 50 kb/cM in an F(2) population. We used the AI-RILs to map QTL for light response and flowering time, and to identify segregation distortion in one of the AI-RIL populations due to a negative epistatic interaction between two genomic regions. CONCLUSIONS/SIGNIFICANCE: The two new AI-RIL populations, EstC and KendC, derived from crosses of Columbia (Col) to Estland (Est-1) and Kendallville (Kend-L) provide an excellent resource for high precision QTL mapping. Moreover, because they have been genotyped with over 100 common markers, they are also excellent material for comparative QTL mapping.


Assuntos
Arabidopsis/genética , Cruzamentos Genéticos , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Epistasia Genética , Flores/genética , Genes de Plantas , Genoma de Planta , Genótipo , Hipocótilo/genética , Hipocótilo/metabolismo
10.
Plant Cell ; 14(4): 795-803, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11971135

RESUMO

TATA binding protein (TBP) and transcription factor IIB (TFIIB) are key factors for the assembly of eukaryotic transcription initiation complexes. We used a rice whole-cell extract in vitro transcription system to characterize the functional interactions of recombinant plant TBP and TFIIB. Bacterially expressed rice TBP (OsTBP2) bound to the TATA box of the rice pal gene encoding phenylalanine ammonia-lyase, caused DNA bending, and enhanced basal transcription from the pal promoter in a TATA box-dependent manner. Recombinant rice TFIIB (OsTFIIB) stimulated the DNA binding and bending activities of OsTBP2 and synergistically enhanced OsTBP2-mediated transcription from the pal promoter and the promoter of Rice tungro bacilliform virus but not from the barley pr1 promoter. We also demonstrate a physical interaction between OsTBP2 and RF2a, a rice bZIP transcription factor that bound to the box II cis element of the promoter of Rice tungro bacilliform virus, resulting in enhanced transcription from the viral promoter. Enhancement of rice whole-cell extracts with recombinant transcription factors thus provides a powerful tool for the in vitro determination of plant gene regulation mechanisms. We conclude that OsTBP2 undergoes promoter-specific functional interactions with both the basal transcription factor OsTFIIB and the accessory transcription factor RF2a.


Assuntos
Proteínas de Ligação a DNA/genética , Oryza/genética , Proteínas de Plantas , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição de Zíper de Leucina Básica , Células Cultivadas , DNA Complementar/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Regulação da Expressão Gênica , Zíper de Leucina/genética , Zíper de Leucina/fisiologia , Dados de Sequência Molecular , Oryza/citologia , Oryza/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Ligação a TATA-Box , Transativadores/metabolismo , Fator de Transcrição TFIIB , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa