Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 32(10): 2674-2687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35000239

RESUMO

The shifts in adaptive strategies revealed by ecological succession and the mechanisms that facilitate these shifts are fundamental to ecology. These adaptive strategies could be particularly important in communities of arbuscular mycorrhizal fungi (AMF) mutualistic with sorghum, where strong AMF succession replaces initially ruderal species with competitive ones and where the strongest plant response to drought is to manage these AMF. Although most studies of agriculturally important fungi focus on parasites, the mutualistic symbionts, AMF, constitute a research system of human-associated fungi whose relative simplicity and synchrony are conducive to experimental ecology. First, we hypothesize that, when irrigation is stopped to mimic drought, competitive AMF species should be replaced by AMF species tolerant to drought stress. We then, for the first time, correlate AMF abundance and host plant transcription to test two novel hypotheses about the mechanisms behind the shift from ruderal to competitive AMF. Surprisingly, despite imposing drought stress, we found no stress-tolerant AMF, probably due to our agricultural system having been irrigated for nearly six decades. Remarkably, we found strong and differential correlation between the successional shift from ruderal to competitive AMF and sorghum genes whose products (i) produce and release strigolactone signals, (ii) perceive mycorrhizal-lipochitinoligosaccharide (Myc-LCO) signals, (iii) provide plant lipid and sugar to AMF, and (iv) import minerals and water provided by AMF. These novel insights frame new hypotheses about AMF adaptive evolution and suggest a rationale for selecting AMF to reduce inputs and maximize yields in commercial agriculture.


Assuntos
Micorrizas , Humanos , Micorrizas/genética , Simbiose/genética , Plantas/genética , Plantas/microbiologia , Agricultura , Expressão Gênica , Raízes de Plantas/microbiologia , Microbiologia do Solo , Solo
2.
Plant Biotechnol J ; 20(4): 748-760, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34837319

RESUMO

Sorghum bicolor (L.) Moench, the fifth most important cereal worldwide, is a multi-use crop for feed, food, forage and fuel. To enhance the sorghum and other important crop plants, establishing gene function is essential for their improvement. For sorghum, identifying genes associated with its notable abiotic stress tolerances requires a detailed molecular understanding of the genes associated with those traits. The limits of this knowledge became evident from our earlier in-depth sorghum transcriptome study showing that over 40% of its transcriptome had not been annotated. Here, we describe a full spectrum of tools to engineer, edit, annotate and characterize sorghum's genes. Efforts to develop those tools began with a morphogene-assisted transformation (MAT) method that led to accelerated transformation times, nearly half the time required with classical callus-based, non-MAT approaches. These efforts also led to expanded numbers of amenable genotypes, including several not previously transformed or historically recalcitrant. Another transformation advance, termed altruistic, involved introducing a gene of interest in a separate Agrobacterium strain from the one with morphogenes, leading to plants with the gene of interest but without morphogenes. The MAT approach was also successfully used to edit a target exemplary gene, phytoene desaturase. To identify single-copy transformed plants, we adapted a high-throughput technique and also developed a novel method to determine transgene independent integration. These efforts led to an efficient method to determine gene function, expediting research in numerous genotypes of this widely grown, multi-use crop.


Assuntos
Edição de Genes , Sorghum , Agrobacterium/genética , Grão Comestível/genética , Plantas Geneticamente Modificadas/genética , Sorghum/genética
3.
Proc Natl Acad Sci U S A ; 116(52): 27124-27132, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31806758

RESUMO

Drought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [Sorghum bicolor (L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant. We conducted a large-scale field experiment, imposing preflowering and postflowering drought stress on 2 genotypes of sorghum across a tightly resolved time series, from plant emergence to postanthesis, resulting in a dataset of nearly 400 transcriptomes. We observed a fast and global transcriptomic response in leaf and root tissues with clear temporal patterns, including modulation of well-known drought pathways. We also identified genotypic differences in core photosynthesis and reactive oxygen species scavenging pathways, highlighting possible mechanisms of drought tolerance and of the delayed senescence, characteristic of the stay-green phenotype. Finally, we discovered a large-scale depletion in the expression of genes critical to arbuscular mycorrhizal (AM) symbiosis, with a corresponding drop in AM fungal mass in the plants' roots.

4.
Methods ; 184: 29-39, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655121

RESUMO

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop noted for its ability to survive water-limiting conditions. Herein, we present an analytical workflow to explore the changes in histone modifications through plant developmental stages and two drought stresses in two sorghum genotypes that differ in their response to drought. Top-down mass spectrometry (MS) is an ideal method to profile histone modifications and distinguish closely related histone proteoforms. We analyzed leaves of 48 plants and identified 26 unique histone proteins and 677 unique histone proteoforms (124 full-length and 553 truncated proteoforms). We detected trimethylation on nearly all H2B N-termini where acetylation is commonly expected. In addition, an unexpected modification on H2A histones was assigned to N-pyruvic acid 2-iminylation based on its unique neutral loss of CO2. Interestingly, some of the truncated histones, in particular H4 and H3.2, showed significant changes that correlated with the growth and water conditions. The histone proteoforms could serve as targets in search of chromatin modifiers and ultimately have important ramifications in future attempts of studying plant epigenetic reprogramming under stress.


Assuntos
Aclimatação/genética , Histonas/análise , Espectrometria de Massas/métodos , Sorghum/fisiologia , Cromatografia de Fase Reversa/métodos , Secas , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Código das Histonas/genética , Histonas/genética , Histonas/metabolismo , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Ácido Pirúvico/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(18): E4284-E4293, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666229

RESUMO

Drought stress is a major obstacle to crop productivity, and the severity and frequency of drought are expected to increase in the coming century. Certain root-associated bacteria have been shown to mitigate the negative effects of drought stress on plant growth, and manipulation of the crop microbiome is an emerging strategy for overcoming drought stress in agricultural systems, yet the effect of drought on the development of the root microbiome is poorly understood. Through 16S rRNA amplicon and metatranscriptome sequencing, as well as root metabolomics, we demonstrate that drought delays the development of the early sorghum root microbiome and causes increased abundance and activity of monoderm bacteria, which lack an outer cell membrane and contain thick cell walls. Our data suggest that altered plant metabolism and increased activity of bacterial ATP-binding cassette (ABC) transporter genes are correlated with these shifts in community composition. Finally, inoculation experiments with monoderm isolates indicate that increased colonization of the root during drought can positively impact plant growth. Collectively, these results demonstrate the role that drought plays in restructuring the root microbiome and highlight the importance of temporal sampling when studying plant-associated microbiomes.


Assuntos
Bactérias , Microbiota , Raízes de Plantas/microbiologia , Sorghum/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Desidratação/metabolismo , Desidratação/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sorghum/crescimento & desenvolvimento
6.
BMC Genomics ; 19(1): 679, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223789

RESUMO

BACKGROUND: Sorghum bicolor is the fifth most commonly grown cereal worldwide and is remarkable for its drought and abiotic stress tolerance. For these reasons and the large size of biomass varieties, it has been proposed as a bioenergy crop. However, little is known about the genes underlying sorghum's abiotic stress tolerance and biomass yield. RESULTS: To uncover the genetic basis of drought tolerance in sorghum at a genome-wide level, we undertook a high-density phenomics genome wide association study (GWAS) in which 648 diverse sorghum lines were phenotyped at two locations in California once per week by drone over the course of a growing season. Biomass, height, and leaf area were measured by drone for individual field plots, subjected to two drought treatments and a well-watered control. The resulting dataset of ~ 171,000 phenotypic data-points was analyzed along with 183,989 genotype by sequence markers to reveal 213 high-quality, replicated, and conserved GWAS associations. CONCLUSIONS: The genomic intervals defined by the associations include many strong candidate genes, including those encoding heat shock proteins, antifreeze proteins, and other domains recognized as important to plant stress responses. The markers identified by our study can be used for marker assisted selection for drought tolerance and biomass. In addition, our results are a significant step toward identifying specific sorghum genes controlling drought tolerance and biomass yield.


Assuntos
Biomassa , Secas , Genes de Plantas/genética , Estudo de Associação Genômica Ampla , Sorghum/genética , Estresse Fisiológico/genética , Aclimatação/genética , Variação Biológica da População , California , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único
7.
Plant Direct ; 7(11): e545, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37965197

RESUMO

Climate change is globally affecting rainfall patterns, necessitating the improvement of drought tolerance in crops. Sorghum bicolor is a relatively drought-tolerant cereal. Functional stay-green sorghum genotypes can maintain green leaf area and efficient grain filling during terminal post-flowering water deprivation, a period of ~10 weeks. To obtain molecular insights into these characteristics, two drought-tolerant genotypes, BTx642 and RTx430, were grown in replicated control and terminal post-flowering drought field plots in California's Central Valley. Photosynthetic, photoprotective, and water dynamics traits were quantified and correlated with metabolomic data collected from leaves, stems, and roots at multiple timepoints during control and drought conditions. Physiological and metabolomic data were then compared to longitudinal RNA sequencing data collected from these two genotypes. The unique metabolic and transcriptomic response to post-flowering drought in sorghum supports a role for the metabolite galactinol in controlling photosynthetic activity through regulating stomatal closure in post-flowering drought. Additionally, in the functional stay-green genotype BTx642, photoprotective responses were specifically induced in post-flowering drought, supporting a role for photoprotection in the molecular response associated with the functional stay-green trait. From these insights, new pathways are identified that can be targeted to maximize yields under growth conditions with limited water.

8.
Nat Commun ; 13(1): 3867, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790741

RESUMO

Plant response to drought stress involves fungi and bacteria that live on and in plants and in the rhizosphere, yet the stability of these myco- and micro-biomes remains poorly understood. We investigate the resistance and resilience of fungi and bacteria to drought in an agricultural system using both community composition and microbial associations. Here we show that tests of the fundamental hypotheses that fungi, as compared to bacteria, are (i) more resistant to drought stress but (ii) less resilient when rewetting relieves the stress, found robust support at the level of community composition. Results were more complex using all-correlations and co-occurrence networks. In general, drought disrupts microbial networks based on significant positive correlations among bacteria, among fungi, and between bacteria and fungi. Surprisingly, co-occurrence networks among functional guilds of rhizosphere fungi and leaf bacteria were strengthened by drought, and the same was seen for networks involving arbuscular mycorrhizal fungi in the rhizosphere. We also found support for the stress gradient hypothesis because drought increased the relative frequency of positive correlations.


Assuntos
Microbiota , Micorrizas , Bactérias/genética , Microbiota/fisiologia , Plantas/microbiologia , Rizosfera , Microbiologia do Solo
9.
Front Plant Sci ; 12: 747225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868130

RESUMO

Renewable fuels are needed to replace fossil fuels in the immediate future. Lignocellulosic bioenergy crops provide a renewable alternative that sequesters atmospheric carbon. To prevent displacement of food crops, it would be advantageous to grow biofuel crops on marginal lands. These lands will likely face more frequent and extreme drought conditions than conventional agricultural land, so it is crucial to see how proposed bioenergy crops fare under these conditions and how that may affect lignocellulosic biomass composition and saccharification properties. We found that while drought impacts the plant cell wall of Sorghum bicolor differently according to tissue and timing of drought induction, drought-induced cell wall compositional modifications are relatively minor and produce no negative effect on biomass conversion. This contrasts with the cell wall-related transcriptome, which had a varied range of highly variable genes (HVGs) within four cell wall-related GO categories, depending on the tissues surveyed and time of drought induction. Further, many HVGs had expression changes in which putative impacts were not seen in the physical cell wall or which were in opposition to their putative impacts. Interestingly, most pre-flowering drought-induced cell wall changes occurred in the leaf, with matrix and lignin compositional changes that did not persist after recovery from drought. Most measurable physical post-flowering cell wall changes occurred in the root, affecting mainly polysaccharide composition and cross-linking. This study couples transcriptomics to cell wall chemical analyses of a C4 grass experiencing progressive and differing drought stresses in the field. As such, we can analyze the cell wall-specific response to agriculturally relevant drought stresses on the transcriptomic level and see whether those changes translate to compositional or biomass conversion differences. Our results bolster the conclusion that drought stress does not substantially affect the cell wall composition of specific aerial and subterranean biomass nor impede enzymatic hydrolysis of leaf biomass, a positive result for biorefinery processes. Coupled with previously reported results on the root microbiome and rhizosphere and whole transcriptome analyses of this study, we can formulate and test hypotheses on individual gene candidates' function in mediating drought stress in the grass cell wall, as demonstrated in sorghum.

10.
Nat Commun ; 12(1): 3209, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050180

RESUMO

Recent studies have demonstrated that drought leads to dramatic, highly conserved shifts in the root microbiome. At present, the molecular mechanisms underlying these responses remain largely uncharacterized. Here we employ genome-resolved metagenomics and comparative genomics to demonstrate that carbohydrate and secondary metabolite transport functionalities are overrepresented within drought-enriched taxa. These data also reveal that bacterial iron transport and metabolism functionality is highly correlated with drought enrichment. Using time-series root RNA-Seq data, we demonstrate that iron homeostasis within the root is impacted by drought stress, and that loss of a plant phytosiderophore iron transporter impacts microbial community composition, leading to significant increases in the drought-enriched lineage, Actinobacteria. Finally, we show that exogenous application of iron disrupts the drought-induced enrichment of Actinobacteria, as well as their improvement in host phenotype during drought stress. Collectively, our findings implicate iron metabolism in the root microbiome's response to drought and may inform efforts to improve plant drought tolerance to increase food security.


Assuntos
Actinobacteria/metabolismo , Secas , Ferro/metabolismo , Microbiota/fisiologia , Sorghum/fisiologia , Aclimatação , Actinobacteria/genética , Produção Agrícola , Segurança Alimentar , Metagenômica/métodos , Raízes de Plantas/microbiologia , RNA-Seq , Rizosfera , Microbiologia do Solo , Sorghum/microbiologia , Estresse Fisiológico
11.
Nat Commun ; 11(1): 34, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911594

RESUMO

Community assembly of crop-associated fungi is thought to be strongly influenced by deterministic selection exerted by the plant host, rather than stochastic processes. Here we use a simple, sorghum system with abundant sampling to show that stochastic forces (drift or stochastic dispersal) act on fungal community assembly in leaves and roots early in host development and when sorghum is drought stressed, conditions when mycobiomes are small. Unexpectedly, we find no signal for stochasticity when drought stress is relieved, likely due to renewed selection by the host. In our experimental system, the host compartment exerts the strongest effects on mycobiome assembly, followed by the timing of plant development and lastly by plant genotype. Using a dissimilarity-overlap approach, we find a universality in the forces of community assembly of the mycobiomes of the different sorghum compartments and in functional guilds of fungi.


Assuntos
Fungos/classificação , Micobioma , Sorghum/microbiologia , Biodiversidade , Secas , Ecossistema , Fungos/genética , Fungos/isolamento & purificação , Microbiologia do Solo , Sorghum/crescimento & desenvolvimento , Sorghum/fisiologia
12.
ISME J ; 13(1): 214-226, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171254

RESUMO

The ecology of fungi lags behind that of plants and animals because most fungi are microscopic and hidden in their substrates. Here, we address the basic ecological process of fungal succession in nature using the microscopic, arbuscular mycorrhizal fungi (AMF) that form essential mutualisms with 70-90% of plants. We find a signal for temporal change in AMF community similarity that is 40-fold stronger than seen in the most recent studies, likely due to weekly samplings of roots, rhizosphere and soil throughout the 17 weeks from seedling to fruit maturity and the use of the fungal DNA barcode to recognize species in a simple, agricultural environment. We demonstrate the patterns of nestedness and turnover and the microbial equivalents of the processes of immigration and extinction, that is, appearance and disappearance. We also provide the first evidence that AMF species co-exist rather than simply co-occur by demonstrating negative, density-dependent population growth for multiple species. Our study shows the advantages of using fungi to test basic ecological hypotheses (e.g., nestedness v. turnover, immigration v. extinction, and coexistence theory) over periods as short as one season.


Assuntos
Micorrizas/genética , Micorrizas/fisiologia , Microbiologia do Solo , Agricultura , DNA Fúngico/genética , Ecologia , Micobioma , Micorrizas/classificação , Raízes de Plantas/microbiologia , Rizosfera , Solo , Sorghum/microbiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa