Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 17(10)2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27689998

RESUMO

In this study, we conducted the first isobaric tags for relative and absolute quantitation (isobaric tags for relative and absolute quantitation (iTRAQ))-based comparative proteomic analysis of ramie plantlets after 0 (minor drought stress), 24 (moderate drought stress), and 72 h (severe drought stress) of treatment with 15% (w/v) poly (ethylene glycol)6000 (PEG6000) to simulate drought stress. In our study, the association analysis of proteins and transcript expression revealed 1244 and 968 associated proteins identified in leaves and roots, respectively. L1, L2, and L3 are leaf samples which were harvested at 0, 24, and 72 h after being treated with 15% PEG6000, respectively. Among those treatment groups, a total of 118, 216, and 433 unique proteins were identified as differentially expressed during L1 vs. L2, L2 vs. L3, and L1 vs. L3, respectively. R1, R2, and R3 are root samples which were harvested at 0, 24, and 72 h after being treated with 15% PEG6000, respectively. Among those treatment groups,a total of 124, 27, and 240 unique proteins were identified as differentially expressed during R1 vs. R2, R2 vs. R3, and R1 vs. R3, respectively. Bioinformatics analysis indicated that glycolysis/gluconeogenesis was significantly upregulated in roots in response to drought stress. This enhancement may result in more glycolytically generated adenosine triphosphate (ATP) in roots to adapt to adverse environmental conditions. To obtain complementary information related to iTRAQ data, the mRNA levels of 12 proteins related to glycolysis/gluconeogenesis in leaves and 7 in roots were further analyzed by qPCR. Most of their expression levels were higher in R3 than R1 and R2, suggesting that these compounds may promote drought tolerance by modulating the production of available energy.

2.
Int J Mol Sci ; 16(2): 3493-511, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25658800

RESUMO

Ramie (Boehmeria nivea L. Gaud), commonly known as China grass, is a perennial bast fiber plant of the Urticaceae. In China, ramie farming, industry, and trade provide income for about five million people. Drought stress severely affects ramie stem growth and causes a dramatic decrease in ramie fiber production. There is a need to enhance ramie's tolerance to drought stress. However, the drought stress regulatory mechanism in ramie remains unknown. Water stress imposed by polyethylene glycol (PEG) is a common and convenient method to evaluate plant drought tolerance. In this study, transcriptome analysis of cDNA collections from ramie subjected to PEG treatment was conducted using Illumina paired-end sequencing, which generated 170 million raw sequence reads. Between leaves and roots subjected to 24 (L2 and R2) and 72 (L3 and R3) h of PEG treatment, 16,798 genes were differentially expressed (9281 in leaves and 8627 in roots). Among these, 25 transcription factors (TFs) from the AP2 (3), MYB (6), NAC (9), zinc finger (5), and bZIP (2) families were considered to be associated with drought stress. The identified TFs could be used to further investigate drought adaptation in ramie.


Assuntos
Boehmeria/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Plantas/genética , Polietilenoglicóis/farmacologia , Análise de Sequência de RNA/métodos , Fatores de Transcrição/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Folhas de Planta/genética , Raízes de Plantas/genética , Estresse Fisiológico
3.
BMC Genomics ; 15: 919, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25339420

RESUMO

BACKGROUND: Ramie (Boehmeria nivea L.), popularly known as "China grass", is one of the oldest crops in China and the second most important fiber crop in terms of area sown. Ramie fiber, extracted from the plant bast, is important in the textile industry. However, the molecular mechanism of ramie fiber development remains unknown. RESULTS: A whole sequencing run was performed on the 454 GS FLX + platform using four separately pooled parts of ramie bast. This generated 1,030,057 reads with an average length of 457 bp. Among the 58,369 unigenes (13,386 contigs and 44,983 isotigs) that were generated through de novo assembly, 780 were differentially expressed. As a result, 13 genes that belong to the cellulose synthase gene family (four), the expansin gene family (three) and the xyloglucan endotransglucosylase/hydrolase (XTH) gene family (six) were up-regulated in the top part of the bast, which was in contrast to the other three parts. The identification of these 13 concurrently up-regulated unigenes indicated that the early stage (represented by the top part of the bast) might be important for the molecular regulation of ramie fiber development. Further analysis indicated that four of the 13 unigenes from the expansin (two) and XTH (two) families shared a coincident expression pattern during the whole growth season, which implied they were more relevant to ramie fiber development (fiber quality, etc.) during the different seasons than the other genes. CONCLUSIONS: To the best of our knowledge, this study is the first to characterize ramie fiber development at different developmental stages. The identified transcripts will improve our understanding of the molecular mechanisms involved in ramie fiber development. Moreover, the identified differentially expressed genes will accelerate molecular research on ramie fiber growth and the breeding of ramie with better fiber yields and quality.


Assuntos
Boehmeria/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Característica Quantitativa Herdável , Transcriptoma , Boehmeria/metabolismo , Análise por Conglomerados , Biologia Computacional , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Fenótipo , Análise de Sequência de DNA
4.
Plants (Basel) ; 13(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38337912

RESUMO

Plants face multiple stresses in their natural habitats. WRKY transcription factors (TFs) play an important regulatory role in plant stress signaling, regulating the expression of multiple stress-related genes to improve plant stress resistance. In this study, we analyzed the expression profiles of 25 BnWRKY genes in three stages of ramie growth (the seedling stage, the rapid-growth stage, and the fiber maturity stage) and response to abiotic stress through qRT-PCR. The results indicated that 25 BnWRKY genes play a role in different growth stages of ramie and were induced by salt and drought stress in the root and leaf. We selected BnWRKY49 as a candidate gene for overexpression in Arabidopsis. BnWRKY49 was localized in the nucleus. Overexpression of BnWRKY49 affected root elongation under drought and salt stress at the Arabidopsis seedling stage and exhibited increased tolerance to drought stress. Further research found that BnWRKY49-overexpressing lines showed decreased stomatal size and increased cuticular wax deposition under drought compared with wild type (WT). Antioxidant enzyme activities of SOD, POD, and CAT were higher in the BnWRKY49-overexpressing lines than the WT. These findings suggested that the BnWRKY49 gene played an important role in drought stress tolerance in Arabidopsis and laid the foundation for further research on the functional analysis of the BnWRKYs in ramie.

5.
Sci Rep ; 8(1): 10734, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013165

RESUMO

Phloem protein 2 (PP2) is one of the most abundant and enigmatic proteins in sieve elements and companion cells, which play important roles in the maintenance of morphology, photoassimilate transportation and wound protection in higher plants, but to date, no PP2 (BnPP2) genes had been identified in ramie. Here, a total of 15 full-length BnPP2 genes were identified. These BnPP2 genes exhibited different responses to abiotic stresses. Interestingly, the BnPP2 genes are more sensitive to insect pests than to other stresses. A study of the BnPP2-15 promoter revealed that pBnPP2-15 could drive specific GUS expression in the petiole, root and stamen and could also be induced by mechanical wounding and aphid infection in transgenic Arabidopsis lines. The subcellular localization of six BnPP2 proteins showed that GFP-BnPP2-1, GFP-BnPP2-6, GFP-BnPP2-7, GFP-BnPP2-9, GFP-BnPP2-11 and GFP-BnPP2-12 were predominantly located in the cytoplasm. These results provide useful information elucidating the functions of BnPP2 genes in ramie.


Assuntos
Boehmeria/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Floema/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Boehmeria/metabolismo , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Floema/genética , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos/genética
6.
FEBS Open Bio ; 8(10): 1572-1583, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30338209

RESUMO

The molecular mechanisms that underlie drought stress responses in kenaf, an important crop for the production of natural fibers, are poorly understood. To address this issue, we describe here the first iTRAQ-based comparative proteomic analysis of kenaf seedlings. Plants were divided into the following three treatment groups: Group A, watered normally (control); Group B, not watered for 6 days (drought treatment); and Group C, not watered for 5 days and then rewatered for 1 day (recovery treatment). A total of 5014 proteins were detected, including 4932 (i.e., 98.36%) that were matched to known proteins in a BLAST search. We detected 218, 107, and 348 proteins that were upregulated in Group B compared with Group A, Group C compared with Group A, and Group B compared with Group C, respectively. Additionally, 306, 145, and 231 downregulated proteins were detected during the same comparisons. Seventy differentially expressed proteins were analyzed and classified into 10 categories: photosynthesis, sulfur metabolism, amino sugar and nucleotide sugar metabolism, oxidative phosphorylation, ribosome, fatty acid elongation, thiamine metabolism, tryptophan metabolism, plant-pathogen interaction, and propanoate. Kenaf adapted to stress mainly by improving the metabolism of ATP, regulating photosynthesis according to light intensity, promoting the synthesis of osmoregulators, strengthening ion transport signal transmission, and promoting metabolism and cell stability. This is the first study to examine changes in protein expression in kenaf plants exposed to drought stress. Our results identified key drought-responsive genes and proteins and may provide useful genetic information for improving kenaf stress resistance.

7.
J Genet ; 95(1): 119-29, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27019439

RESUMO

Small auxin-up RNA (SAUR) genes are important gene families in auxin signalling transduction and are commonly used as early auxin responsive markers. Till date, no SAUR gene is identified in Urticales plants despite of the published bioinformation of mulberry, hemp and ramie. In this study, we used Arabidopsis sequences as query to search against mulberry, hemp genomes and ramie transcriptome database. In total, we obtained 62, 56 and 71 SAUR genes in mulberry, hemp and ramie, respectively. Phylogenetic analysis revealed the Urticales specific expansion of SAUR genes. Expression analysis showed 15 randomly selected ramie SAUR genes that were diversely functioned in ramie tissues and revealed a series of IAA-responsive, drought-responsive and high temperature-responsive genes. Moreover, comparison of qRT-PCR data and previous RNA-Seq data suggested the reliability of our work. In this study, we first report the identification of SAUR genes in Urticales plants. These results will provide a foundation for their function validation in Urticales plant growth and development.


Assuntos
Genes de Plantas , Ácidos Indolacéticos/metabolismo , Urticaceae/genética , Perfilação da Expressão Gênica , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Frações Subcelulares/metabolismo , Urticaceae/classificação
8.
Gene ; 569(1): 27-33, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25481635

RESUMO

Gene cloning is the first step to study the expression profiles and functions of a particular gene; considerable cloning methods have been developed. Expansin, thought to involve in the cell-wall modification events, was not cloned in ramie (Boehmeria nivea L.), which is one of the most important bast fiber crops with little conducted molecular research, especially on its fiber development. Studying the expansin gene family will uncover its possible relationship with ramie fiber development and other growth events. As a result, five expansin genes were cloned with full-length and their sequence information was investigated. Additionally, the phylogenetic analysis was conducted, which suggested that the cloned genes belong to the α-subfamily, and these genes expressed differently during ramie fiber developmental process. In this study, we aimed to apply a strategy for cloning novel full-length genes from genomic DNA of ramie, based on using degenerate primers, touchdown polymerase chain reaction and universal fast walking protocols. By cloning five full-length expansin genes, we believe the polymerase chain reaction-based gene cloning strategy could be applied to general gene studies in ramie and other crops.


Assuntos
Boehmeria/genética , Clonagem Molecular/métodos , Anotação de Sequência Molecular , Proteínas de Plantas/genética , DNA de Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/isolamento & purificação
9.
PLoS One ; 9(11): e113768, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415356

RESUMO

In vitro organogenesis, one of the most common pathways leading to in vitro plant regeneration, is widely used in biotechnology and the fundamental study of plant biology. Although previous studies have constructed a complex regulatory network model for Arabidopsis in vitro organogenesis, no related study has been reported in ramie. To generate more complete observations of transcriptome content and dynamics during ramie in vitro organogenesis, we constructed a reference transcriptome library and ten digital gene expression (DGE) libraries for illumina sequencing. Approximately 111.34 million clean reads were obtained for transcriptome and the DGE libraries generated between 13.5 and 18.8 million clean reads. De novo assembly produced 43,222 unigenes and a total of 5,760 differentially expressed genes (DEGs) were filtered. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database, 26 auxin related and 11 cytokinin related DEGs were selected for qRT-PCR validation of two ramie cultivars, which had high (Huazhu No. 5) or extremely low (Dazhuhuangbaima) shoot regeneration abilities. The results revealed differing regulation patterns of auxin and cytokinin in different genotypes. Here we report the first genome-wide gene expression profiling of in vitro organogenesis in ramie and provide an overview of transcription and phytohormone regulation during the process. Furthermore, the auxin and cytokinin related genes have distinct expression patterns in two ramie cultivars with high or extremely low shoot regeneration ability, which has given us a better understanding of the in vitro organogenesis mechanism. This result will provide a foundation for future phytohormone research and lead to improvements of the ramie regeneration system.


Assuntos
Boehmeria/fisiologia , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Organogênese Vegetal/fisiologia , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa