Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cancer Immunol Immunother ; 71(1): 121-136, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34028567

RESUMO

Liver cancer accounts for 6% of all malignancies causing death worldwide, and hepatocellular carcinoma (HCC) is the most common histological type. HCC is a heterogeneous cancer, but how the tumour microenvironment (TME) of HCC contributes to the progression of HCC remains unclear. In this study, we investigated the immune microenvironment by multiomics analysis. The tumour immune infiltration characteristics of HCC were determined at the genomic, epigenetic, bulk transcriptome and single-cell levels by data from The Cancer Genome Atlas portal and the Gene Expression Omnibus (GEO). An epigenetic immune-related scoring system (EIRS) was developed to stratify patients with poor prognosis. SPP1, one gene in the EIRS system, was identified as an immune-related predictor of poor survival in HCC patients. Through receptor-ligand pair analysis in single-cell RNA-seq, SPP1 was indicated to mediate the crosstalk between HCC cells and macrophages via SPP1-CD44 and SPP1-PTGER4 association. In vitro experiments further validate SPP1 can trigger the polarization of macrophages to M2-phenotype tumour-associated macrophages (TAMs).


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Osteopontina/metabolismo , Microambiente Tumoral , Adulto , Idoso , Algoritmos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Metilação de DNA , Intervalo Livre de Doença , Feminino , Genoma Humano , Células Hep G2 , Humanos , Sistema Imunitário , Imunoterapia , Ligantes , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Fenótipo , Prognóstico , RNA Interferente Pequeno/metabolismo , Resultado do Tratamento
2.
J Nanobiotechnology ; 20(1): 189, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418077

RESUMO

Extracellular vesicles (EVs), spherical biological vesicles, mainly contain nucleic acids, proteins, lipids and metabolites for biological information transfer between cells. Microparticles (MPs), a subtype of EVs, directly emerge from plasma membranes, and have gained interest in recent years. Specific cell stimulation conditions, such as ultraviolet and X-rays irradiation, can induce the release of MPs, which are endowed with unique antitumor functionalities, either for therapeutic vaccines or as direct antitumor agents. Moreover, the size of MPs (100-1000 nm) and their spherical structures surrounded by a lipid bilayer membrane allow MPs to function as delivery vectors for bioactive antitumor compounds, with favorable phamacokinetic behavior, immunostimulatory activity and biological function, without inherent carrier-specific toxic side effects. In this review, the mechanisms underlying MP biogenesis, factors that influence MP production, properties of MP membranes, size, composition and isolation methods of MPs are discussed. Additionally, the applications and mechanisms of action of MPs, as well as the main hurdles for their applications in cancer management, are introduced.


Assuntos
Antineoplásicos , Micropartículas Derivadas de Células , Vesículas Extracelulares , Neoplasias , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Micropartículas Derivadas de Células/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
3.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884552

RESUMO

Dexmedetomidine (DEX), a selective α2 adrenergic receptor (AR) agonist, is commonly used as a sedative drug during critical illness. In the present study, we explored a novel accelerative effect of DEX on cardiac fibroblast (CF) differentiation mediated by LPS and clarified its potential mechanism. LPS apparently increased the expression of α-SMA and collagen I/III and the phosphorylation of p38 and Smad-3 in the CFs of mice. These effects were significantly enhanced by DEX through increasing α2A-AR expression in CFs after LPS stimulation. The CFs from α2A-AR knockout mice were markedly less sensitive to DEX treatment than those of wild-type mice. Inhibition of protein kinase C (PKC) abolished the enhanced effects of DEX on LPS-induced differentiation of CFs. We also found that the α-SMA level in the second-passage CFs was much higher than that in the nonpassage and first-passage CFs. However, after LPS stimulation, the TNF-α released from the nonpassage CFs was much higher than that in the first- and second-passage CFs. DEX had no effect on LPS-induced release of TNF-α and IL-6 from CFs. Further investigation indicated that DEX promoted cardiac fibrosis and collagen I/III synthesis in mice exposed to LPS for four weeks. Our results demonstrated that DEX effectively accelerated LPS-induced differentiation of CFs to myofibroblasts through the PKC-p38-Smad2/3 signaling pathway by activating α2A-AR.


Assuntos
Diferenciação Celular , Colágeno Tipo III/metabolismo , Colágeno Tipo I/metabolismo , Dexmedetomidina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Miofibroblastos/citologia , Receptores Adrenérgicos alfa 2/química , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
J Cardiovasc Pharmacol ; 73(3): 186-194, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30839512

RESUMO

OBJECTIVE: To investigate whether phenylephrine (PE) inhibits sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury through the PI3K/Akt signaling pathway. METHODS: A rat model of sepsis was established by cecal ligation and puncture. PE and/or wortmannin (a PI3K inhibitor) were administered to investigate the role of PI3K/Akt signaling in mediating the effects of PE on inhibiting sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury. Hematoxylin-eosin staining, echocardiography, and Langendorff system were used to examine the myocardial injury and function. The concentrations of TNF-α and IL-6 were analyzed by enzyme-linked immunosorbent assay. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), myeloperoxidase, mitochondria-related fusion/fission proteins, and PI3K/Akt signaling pathway-associated proteins were analyzed by Western blotting. RESULTS: PE improved the cardiac function and survival in septic rats. PE decreased TNF-α, IL-6, ICAM-1, VCAM-1, and myeloperoxidase contents in the myocardium of septic rats. Meanwhile, PE increased the fusion-related proteins and decreased the fission-related proteins in the myocardial mitochondria of septic rats. On the other hand, PE activated the PI3K/Akt signaling pathway in the cecal ligation and puncture-treated rats, and all the protective effects of PE were abolished by wortmannin. CONCLUSIONS: PE attenuated sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury through the PI3K/Akt signaling pathway.


Assuntos
Mitocôndrias Cardíacas/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Miocardite/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Fenilefrina/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/tratamento farmacológico , Animais , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Preparação de Coração Isolado , Masculino , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/metabolismo , Miocardite/enzimologia , Miocardite/etiologia , Miocardite/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Peroxidase/metabolismo , Ratos Sprague-Dawley , Sepse/complicações , Transdução de Sinais , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda
5.
Cancer Cell Int ; 17: 6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28070168

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) detected in peripheral blood (PB) of cancer patients can be identified as isolated CTCs and circulating tumor microemboli (CTM). This study aimed to evaluate the prognostic value of CTM detection and CTC phenotype in advanced colorectal cancer (CRC) patients during chemotherapy. METHODS: A size-based platform for CTC isolation was applied. PB samples (5 ml) from 98 advanced CRC patients during 2-6 cycles chemotherapy were collected for CTC detection, and CTC count was correlated to patient's clinicopathological characteristics and clinical outcome. And CTC phenotype was measured by immunofluorescent staining and evaluate the predictive significance on survival in 32 CTCs-positive patients with advanced CRC. RESULTS: Forty-eight of 98 patients were CTCs-positive, including 18 CTM-positive patients, and CTC detection was positively correlated with lymphatic invasion (P = 0.049), TNM stage (P = 0.023), and serum CEA level (P = 0.014). Moreover, Kaplan-Meier survival and Cox regression analyses revealed that the presence of CTCs was an independent factor for poor PFS and OS (P < 0.05) in advanced CRC patients during chemotherapy, and CTM-positive patients had shooter survival than isolated CTCs-positive patients (P < 0.05). Furthermore, patients with vimentin+ isolated CTCs/CTM had shorter PFS and OS compared with CK+ CTCs (P < 0.05). CONCLUSIONS: This study provided evidence that the presence of CTCs was positively correlated with poor prognosis, and furthermore, CTM and vimentin+ CTCs predicted poorer survival, which indicated that CTM and vimentin+ CTCs detected by a sensitive platform could be used to improve prognostic value of CTCs in advanced CRC patients under treatment.

6.
Wei Sheng Wu Xue Bao ; 55(8): 1018-25, 2015 Aug 04.
Artigo em Chinês | MEDLINE | ID: mdl-26665599

RESUMO

OBJECTIVE: Curdlan is produced by Agrobacterium sp. ATCC 31749 under nitrogen limiting condition. The biosynthesis of crudlan is a typical aerobic bioprocess, and the production of curdlan would be severely restricted under micro-aerobic and anoxic conditions. Proteomic analysis of Agrobacterium sp. was conducted to investigate the effect of dissolved oxygen on the crucial enzymes involved in curdlan biosynthesis. METHODS: Two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Agrobacterium sp. ATCC 31749 cultured under various dissolved oxygen levels (75%, 50%, 25% and 5%). In addition, a comparative proteomic analysis of the intracellular proteins expression level under various dissolved oxygen levels was done. Significant differently expressed proteins were identified by MALDI-TOF/TOF. RESULTS: Finally, we identified 15 differently expressed proteins involved in polysaccharide synthesis, fatty acid synthesis, amino acid synthesis pathway. Among these proteins, phosphoglucomutase and orotidine 5-phosphate decarboxylase were the key metabolic enzymes directing curdlan biosynthesis. CONCLUSION: Oxygen could affect the expression of the proteins taking charge of curdlan synthesis significantly.


Assuntos
Agrobacterium/metabolismo , Proteínas de Bactérias/química , Oxigênio/metabolismo , beta-Glucanas/metabolismo , Agrobacterium/química , Agrobacterium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eletroforese em Gel Bidimensional , Dados de Sequência Molecular , Proteômica
7.
Adv Sci (Weinh) ; 11(26): e2308892, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38682485

RESUMO

Heterogeneous organ-specific responses to immunotherapy exist in lung cancer. Dissecting tumor microenvironment (TME) can provide new insights into the mechanisms of divergent responses, the process of which remains poor, partly due to the challenges associated with single-cell profiling using formalin-fixed paraffin-embedded (FFPE) materials. In this study, single-cell nuclei RNA sequencing and imaging mass cytometry (IMC) are used to dissect organ-specific cellular and spatial TME based on FFPE samples from paired primary lung adenocarcinoma (LUAD) and metastases. Single-cell analyses of 84 294 cells from sequencing and 250 600 cells from IMC reveal divergent organ-specific immune niches. For sites of LUAD responding well to immunotherapy, including primary LUAD and adrenal gland metastases, a significant enrichment of B, plasma, and T cells is detected. Spatially resolved maps reveal cellular neighborhoods recapitulating functional units of the tumor ecosystem and the spatial proximity of B and CD4+ T cells at immunogenic sites. Various organ-specific densities of tertiary lymphoid structures are observed. Immunosuppressive sites, including brain and liver metastases, are deposited with collagen I, and T cells at these sites highly express TIM-3. This study originally deciphers the single-cell landscape of the organ-specific TME at both cellular and spatial levels for LUAD, indicating the necessity for organ-specific treatment approaches.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Microambiente Tumoral , Microambiente Tumoral/genética , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Citometria por Imagem/métodos , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Imunoterapia/métodos
8.
Adv Sci (Weinh) ; 11(23): e2401061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569519

RESUMO

The heterogeneity of macrophages influences the response to immune checkpoint inhibitor (ICI) therapy. However, few studies explore the impact of APOE+ macrophages on ICI therapy using single-cell RNA sequencing (scRNA-seq) and machine learning methods. The scRNA-seq and bulk RNA-seq data are Integrated to construct an M.Sig model for predicting ICI response based on the distinct molecular signatures of macrophage and machine learning algorithms. Comprehensive single-cell analysis as well as in vivo and in vitro experiments are applied to explore the potential mechanisms of the APOE+ macrophage in affecting ICI response. The M.Sig model shows clear advantages in predicting the efficacy and prognosis of ICI therapy in pan-cancer patients. The proportion of APOE+ macrophages is higher in ICI non-responders of triple-negative breast cancer compared with responders, and the interaction and longer distance between APOE+ macrophages and CD8+ exhausted T (Tex) cells affecting ICI response is confirmed by multiplex immunohistochemistry. In a 4T1 tumor-bearing mice model, the APOE inhibitor combined with ICI treatment shows the best efficacy. The M.Sig model using real-world immunotherapy data accurately predicts the ICI response of pan-cancer, which may be associated with the interaction between APOE+ macrophages and CD8+ Tex cells.


Assuntos
Apolipoproteínas E , Inibidores de Checkpoint Imunológico , Macrófagos , Análise de Célula Única , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Animais , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Análise de Célula Única/métodos , Humanos , Apolipoproteínas E/genética , Modelos Animais de Doenças , Feminino , Aprendizado de Máquina , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
9.
Biomaterials ; 305: 122463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232643

RESUMO

The tumor microenvironment (TME), which is mostly composed of tumor cells, immune cells, signaling molecules, stromal tissue, and the vascular system, is an integrated system that is conducive to the formation of tumors. TME heterogeneity makes the response to immunotherapy different in different tumors, such as "immune-cold" and "immune-hot" tumors. Tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells are the major suppressive immune cells and their different phenotypes interact and influence cancer cells by secreting different signaling factors, thus playing a key role in the formation of the TME as well as in the initiation, growth, and metastasis of cancer cells. Nanotechnology development has facilitated overcoming the obstacles that limit the further development of conventional immunotherapy, such as toxic side effects and lack of targeting. In this review, we focus on the role of three major suppressive immune cells in the TME as well as in tumor development, clinical trials of different drugs targeting immune cells, and different attempts to combine drugs with nanomaterials. The aim is to reveal the relationship between immunotherapy, immunosuppressive TME and nanomedicine, thus laying the foundation for further development of immunotherapy.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Microambiente Tumoral , Imunoterapia , Neoplasias/tratamento farmacológico , Nanomedicina
10.
Cell Rep Med ; 5(2): 101399, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38307032

RESUMO

Colorectal cancer (CRC) is a common malignancy involving multiple cellular components. The CRC tumor microenvironment (TME) has been characterized well at single-cell resolution. However, a spatial interaction map of the CRC TME is still elusive. Here, we integrate multiomics analyses and establish a spatial interaction map to improve the prognosis, prediction, and therapeutic development for CRC. We construct a CRC immune module (CCIM) that comprises FOLR2+ macrophages, exhausted CD8+ T cells, tolerant CD8+ T cells, exhausted CD4+ T cells, and regulatory T cells. Multiplex immunohistochemistry is performed to depict the CCIM. Based on this, we utilize advanced deep learning technology to establish a spatial interaction map and predict chemotherapy response. CCIM-Net is constructed, which demonstrates good predictive performance for chemotherapy response in both the training and testing cohorts. Lastly, targeting FOLR2+ macrophage therapeutics is used to disrupt the immunosuppressive CCIM and enhance the chemotherapy response in vivo.


Assuntos
Neoplasias Colorretais , Aprendizado Profundo , Receptor 2 de Folato , Humanos , Linfócitos T CD8-Positivos , Multiômica , Macrófagos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Microambiente Tumoral/genética
11.
Gastroenterol Rep (Oxf) ; 11: goac088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36751477

RESUMO

Background: Limited second-line therapeutic options are available for metastasis pancreatic cancer (mPC). We aimed to explore the efficacy and safety of oxaliplatin plus irinotecan (IROX) in mPC patients. Methods: This is an open-label, Phase 2, randomized study of mPC patients (aged 18-75 years) who failed when using gemcitabine plus S-1 as first-line therapy. Block randomization with a block size of four was used to randomly assign patients (1:1) between October 2015 and December 2017 to receive either IROX (oxaliplatin 85 mg/m2 and irinotecan 160 mg/m2) or irinotecan monotherapy (irinotecan 180 mg/m2) until disease progression, unacceptable adverse events, or consent withdrawal. The primary end point was overall survival, and the secondary end points were progression-free survival, overall response rate, and adverse event rate. Results: A total of 74 patients were enrolled in this study, including 44 males and 30 females, with an average age of 61 years. The median overall survival was 10.2 and 6.7 months (adjusted hazard ratio [HR], 0.7; 95% confidence interval [CI], 0.4-1.2; P = 0.20) and the median progression-free survival was 5.1 and 2.3 months (adjusted HR, 0.4; 95% CI, 0.2-0.6; P < 0.01) in the IROX group and irinotecan group, respectively. The overall response rates were 18.4% (7/38) in the IROX group and 5.5% (2/36) in the irinotecan group (P = 0.06). Grade 3-4 adverse events occurred in 34% (13/38) of patients in the IROX group and 19% (7/36) of patients in the irinotecan group (P = 0.15). Conclusions: IROX had no significant survival benefit over irinotecan monotherapy in our study. However, IROX reduced the risk of disease progression by 60%, with acceptable toxicity.

12.
Pharmaceutics ; 15(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631346

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is one of the most aggressive types of human cancers. Although paclitaxel (PTX) was proven to exert potent anti-tumor effects against ICC, the delivery of PTX is still challenging due to its hydrophobic property. Nanoparticle (NP)-based carriers have been proven to be effective drug delivery vehicles. Among their physicochemical properties, the shape of NPs plays a crucial role in their performance of cellular internalization and thus anti-tumor efficacy of loaded drugs. In this study, dumbbell-like and snowman-like dimer NPs, composed of a polylactic acid (PLA) bulb and a shellac bulb, were designed and prepared as drug nanocarriers to enhance the efficiency of cellular uptake and anti-tumor performance. PLA/shellac dimer NPs prepared through rapid solvent exchange and controlled co-precipitation are biocompatible and their shape could flexibly be tuned by adjusting the concentration ratio of shellac to PLA. Drug-loaded snowman-like PLA/shellac dimer NPs with a sharp shape exhibit the highest cellular uptake and best cell-killing ability against cancer cells in an in vitro ICC model over traditional spherical NPs and dumbbell-like dimer NPs, as proven with the measurements of flow cytometry, fluorescent confocal microscopy, and the CCK8 assay. The underlying mechanism may be attributed to the lower surface energy required for the smaller bulbs of snowman-like PLA/shellac dimer NPs to make the initial contact with the cell membrane, which facilitates the subsequent penetration through the cellular membrane. Therefore, these dimer NPs provide a versatile platform to tune the shape of NPs and develop innovative drug nanocarriers that hold great promise to enhance cellular uptake and therapeutic efficacy.

13.
Int Immunopharmacol ; 116: 109724, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696856

RESUMO

BACKGROUND: Dexmedetomidine (DEX) administered before or at 30 min after sepsis induction was reported to alleviate septic cardiomyopathy in experimental models. However, sepsis is a life-threatening organ dysfunction due to infection-induced dysregulated host response, whether DEX treatment in the presence of organ dysfunction affects septic cardiomyopathy is unknown. This study investigated the effect of DEX posttreatment on septic cardiomyopathy. METHODS: Male wild-type and α2A-adrenergic receptor (AR) knockout mice were exposed to lipopolysaccharide (LPS) or cecal ligation puncture (CLP), and cultured cardiac endothelial cells were used. Mouse survival, myocardial function, inflammatory response and related signaling pathways were determined. RESULTS: DEX treatment at 6, 9 h after LPS challenge significantly reduced survival rate of LPS-challenged mice, especially at 9 h. DEX administered at 9 h after LPS injection or CLP significantly reduced survival in LPS or CLP-induced sepsis in wild-type mice, but not in α2A-AR knockout mice. LPS treatment for 20 h decreased the left ventricle + dp/dt, increased myocardial interleukin (IL)-1ß and IL-6 concentrations as well as cardiac endothelial tumor necrosis factor (TNF)-α, vascular cell adhesion molecule-1 (VCAM-1) and ICAM-1 expression, which were enhanced by DEX treated at 9 h after LPS injection in wild-type mice, but not in α2A-AR knockout mice. Furthermore, DEX posttreatment increased p38 phosphorylation, c-Fos nuclear translocation and VCAM-1 expression in LPS-treated cardiac endothelial cells, which were eliminated by α2A-AR knockout or PKC inhibitor. CONCLUSIONS: DEX posttreatment aggravates LPS-induced cardiac inflammation and myocardial dysfunction, at least in part, via activating cardiac endothelial α2A-AR-mediated PKC signal pathway.


Assuntos
Cardiomiopatias , Dexmedetomidina , Sepse , Camundongos , Masculino , Animais , Lipopolissacarídeos/farmacologia , Dexmedetomidina/uso terapêutico , Dexmedetomidina/farmacologia , Células Endoteliais/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Insuficiência de Múltiplos Órgãos , Fator de Necrose Tumoral alfa/metabolismo , Sepse/tratamento farmacológico , Camundongos Knockout
14.
Nat Commun ; 14(1): 3643, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339977

RESUMO

Accumulation of inorganic nanoparticles in living organisms can cause an increase in cellular reactive oxygen species (ROS) in a dose-dependent manner. Low doses of nanoparticles have shown possibilities to induce moderate ROS increases and lead to adaptive responses of biological systems, but beneficial effects of such responses on metabolic health remain elusive. Here, we report that repeated oral administrations of various inorganic nanoparticles, including TiO2, Au, and NaYF4 nanoparticles at low doses, can promote lipid degradation and alleviate steatosis in the liver of male mice. We show that low-level uptake of nanoparticles evokes an unusual antioxidant response in hepatocytes by promoting Ces2h expression and consequently enhancing ester hydrolysis. This process can be implemented to treat specific hepatic metabolic disorders, such as fatty liver in both genetic and high-fat-diet obese mice without causing observed adverse effects. Our results demonstrate that low-dose nanoparticle administration may serve as a promising treatment for metabolic regulation.


Assuntos
Fígado Gorduroso , Nanopartículas , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Antioxidantes/metabolismo , Metabolismo dos Lipídeos , Espécies Reativas de Oxigênio/metabolismo , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos Endogâmicos C57BL
15.
iScience ; 26(12): 108468, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077136

RESUMO

To investigate whole-slide-level prediction in the field of artificial intelligence identification of dMMR/pMMR from hematoxylin and eosin (H&E) in colorectal cancer (CRC), we established a segmentation-based dMMR/pMMR deep learning detector (SPEED). Our model was approximately 1,700 times faster than that of the classification-based model. For the internal validation cohort, our model yielded an overall AUC of 0.989. For the external validation cohort, the model exhibited a high performance, with an AUC of 0.865. The human‒machine strategy further improved the model performance for external validation by an AUC up to 0.988. Our whole-slide-level prediction model provided an approach for dMMR/pMMR detection from H&E whole slide images with excellent predictive performance and less computer processing time in patients with CRC.

16.
Adv Mater ; 35(35): e2303542, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37192546

RESUMO

The combination of ferroptosis inducers and immune checkpoint blockade can enhance antitumor effects. However, the efficacy in tumors with low immunogenicity requires further investigation. In this work, a water-in-oil Pickering emulsion gel is developed to deliver (1S, 3R)-RSL-3 (RSL-3), a ferroptosis inducer dissolved in iodized oil, and programmed death-1 (PD-1) antibody, the most commonly used immune checkpoint inhibitor dissolved in water, with optimal characteristics (RSL-3 + PD-1@gel). Tumor lipase degrades the continuous oil phase, which results in the slow release of RSL-3 and PD-1 antibody and a notable antitumor effect against low-immunogenic hepatocellular carcinoma and pancreatic cancer. Intriguingly, the RSL-3 + PD-1@gel induces ferroptosis of tumor cells, resulting in antitumor immune response via accumulation of helper T lymphocyte cells and cytotoxic T cells. Additionally, the single-cell sequence profiling analysis during tumor treatment reveals the induction of ferroptosis in tumor cells together with strong antitumor immune response in ascites.

17.
Cell Rep Med ; 4(4): 100987, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36990096

RESUMO

Immunometabolism in the tumor microenvironment (TME) and its influence on the immunotherapy response remain uncertain in colorectal cancer (CRC). We perform immunometabolism subtyping (IMS) on CRC patients in the training and validation cohorts. Three IMS subtypes of CRC, namely, C1, C2, and C3, are identified with distinct immune phenotypes and metabolic properties. The C3 subtype exhibits the poorest prognosis in both the training cohort and the in-house validation cohort. The single-cell transcriptome reveals that a S100A9+ macrophage population contributes to the immunosuppressive TME in C3. The dysfunctional immunotherapy response in the C3 subtype can be reversed by combination treatment with PD-1 blockade and an S100A9 inhibitor tasquinimod. Taken together, we develop an IMS system and identify an immune tolerant C3 subtype that exhibits the poorest prognosis. A multiomics-guided combination strategy by PD-1 blockade and tasquinimod improves responses to immunotherapy by depleting S100A9+ macrophages in vivo.


Assuntos
Neoplasias Colorretais , Multiômica , Humanos , Receptor de Morte Celular Programada 1 , Imunoterapia , Macrófagos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Microambiente Tumoral
18.
EClinicalMedicine ; 63: 102175, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37680942

RESUMO

Background: Glypican-3 (GPC3) is a well-characterized hepatocellular carcinoma (HCC)-associated antigen and a promising target for HCC treatment. CT017 CAR T cells were engineered to co-express CAR-GPC3 and runt-related transcription factor 3 (RUNX3), which triggers CD8+ T-cell infiltration into the cancer microenvironment. Methods: This single-center, single-arm, open-label, phase I clinical study enrolled heavily pretreated patients with GPC3-positive HCC between August 2019 and December 2020 (NCT03980288). Patients were treated with CT017 CAR T cells at a dose of 250 × 106 cells. The primary objective was to assess the safety and tolerability of this first-in-human product. Findings: Six patients received 7 infusions (one patient received 2 infusions) at the 250 × 106 cells dose. Three patients received CT017 monotherapy, and three patients received CT017-tyrosine kinase inhibitor (TKI) combination therapy at the first infusion. One patient received CT017-TKI combination therapy at the second infusion after CT017 monotherapy. All patients experienced cytokine release syndrome (CRS), with 50% (3/6) at Grade 2, 50% (3/6) at Grade 3, and all events resolved after treatment. No immune effector cell-associated neurotoxicity syndrome was observed. Dose escalation was not performed due to the investigator's decision regarding safety. Of six evaluable patients, one achieved partial response and two had stable disease for a 16.7% objective response rate, 50% disease control rate, 3.5-month median progression-free survival, 3.2-month median duration of disease control, and 7.9-month median overall survival (OS) with 7.87-month median follow-up. The longest OS was 18.2 months after CT017 infusion. Interpretation: Current preliminary phase I data showed a manageable safety profile and promising antitumor activities of CT017 for patients with advanced HCC. These results need to be confirmed in a robust clinical trial. Funding: This study was funded by CARsgen Therapeutics Co., Ltd.

19.
Int J Comput Assist Radiol Surg ; 17(10): 1845-1853, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35867303

RESUMO

PURPOSE: The existing medical imaging tools have a detection accuracy of 97% for peritoneal metastasis(PM) bigger than 0.5 cm, but only 29% for that smaller than 0.5 cm, the early detection of PM is still a difficult problem. This study is aiming at constructing a deep convolution neural network classifier based on meta-learning to predict PM. METHOD: Peritoneal metastases are delineated on enhanced CT. The model is trained based on meta-learning, and features are extracted using multi-modal deep Convolutional Neural Network(CNN) with enhanced CT to classify PM. Besides, we evaluate the performance on the test dataset, and compare it with other PM prediction algorithm. RESULTS: The training datasets are consisted of 9574 images from 43 patients with PM and 67 patients without PM. The testing datasets are consisted of 1834 images from 21 testing patients. To increase the accuracy of the prediction, we combine the multi-modal inputs of plain scan phase, portal venous phase and arterial phase to build a meta-learning-based multi-modal PM predictor. The classifier shows an accuracy of 87.5% with Area Under Curve(AUC) of 0.877, sensitivity of 73.4%, specificity of 95.2% on the testing datasets. The performance is superior to routine PM classify based on logistic regression (AUC: 0.795), a deep learning method named ResNet3D (AUC: 0.827), and a domain generalization (DG) method named MADDG (AUC: 0.834). CONCLUSIONS: we proposed a novel training strategy based on meta-learning to improve the model's robustness to "unseen" samples. The experiments shows that our meta-learning-based multi-modal PM predicting classifier obtain more competitive results in synchronous PM prediction compared to existing algorithms and the model's improvements of generalization ability even with limited data.


Assuntos
Aprendizado Profundo , Neoplasias Peritoneais , Algoritmos , Humanos , Redes Neurais de Computação , Neoplasias Peritoneais/diagnóstico por imagem
20.
Commun Biol ; 5(1): 96, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079095

RESUMO

Intrinsic cardiac adrenergic (ICA) cells regulate both developing and adult cardiac physiological and pathological processes. However, the role of ICA cells in septic cardiomyopathy is unknown. Here we show that norepinephrine (NE) secretion from ICA cells is increased through activation of Toll-like receptor 4 (TLR4) to aggravate myocardial TNF-α production and dysfunction by lipopolysaccharide (LPS). In ICA cells, LPS activated TLR4-MyD88/TRIF-AP-1 signaling that promoted NE biosynthesis through expression of tyrosine hydroxylase, but did not trigger TNF-α production due to impairment of p65 translocation. In a co-culture consisting of LPS-treated ICA cells and cardiomyocytes, the upregulation and secretion of NE from ICA cells activated cardiomyocyte ß1-adrenergic receptor driving Ca2+/calmodulin-dependent protein kinase II (CaMKII) to crosstalk with NF-κB and mitogen-activated protein kinase pathways. Importantly, blockade of ICA cell-derived NE prevented LPS-induced myocardial dysfunction. Our findings suggest that ICA cells may be a potential therapeutic target for septic cardiomyopathy.


Assuntos
Cardiomiopatias/induzido quimicamente , Fármacos Cardiovasculares/farmacologia , Lipopolissacarídeos/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Norepinefrina/metabolismo , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa