Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chaos Solitons Fractals ; 143: 110601, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33551580

RESUMO

Considering the great effect of vaccination and the unpredictability of environmental variations in nature, a stochastic Susceptible-Vaccinated-Infected-Susceptible (SVIS) epidemic model with standard incidence and vaccination strategies is the focus of the present study. By constructing a series of appropriate Lyapunov functions, the sufficient criterion R 0 s > 1 is obtained for the existence and uniqueness of the ergodic stationary distribution of the model. In epidemiology, the existence of a stationary distribution indicates that the disease will be persistent in a long term. By taking the stochasticity into account, a quasi-endemic equilibrium related to the endemic equilibrium of the deterministic system is defined. By means of the method developed in solving the general three-dimensional Fokker-Planck equation, the exact expression of the probability density function of the stochastic model around the quasi-endemic equilibrium is derived, which is the key aim of the present paper. In statistical significance, the explicit density function can reflect all dynamical properties of an epidemic system. Next, a simple result of disease extinction is obtained. In addition, several numerical simulations and parameter analyses are performed to illustrate the theoretical results. Finally, the corresponding results and conclusions are discussed at the end of the paper.

2.
Nonlinear Dyn ; 105(1): 931-955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34121810

RESUMO

Recently, considering the temporary immunity of individuals who have recovered from certain infectious diseases, Liu et al. (Phys A Stat Mech Appl 551:124152, 2020) proposed and studied a stochastic susceptible-infected-recovered-susceptible model with logistic growth. For a more realistic situation, the effects of quarantine strategies and stochasticity should be taken into account. Hence, our paper focuses on a stochastic susceptible-infected-quarantined-recovered-susceptible epidemic model with temporary immunity. First, by means of the Khas'minskii theory and Lyapunov function approach, we construct a critical value R 0 S corresponding to the basic reproduction number R 0 of the deterministic system. Moreover, we prove that there is a unique ergodic stationary distribution if R 0 S > 1 . Focusing on the results of Zhou et al. (Chaos Soliton Fractals 137:109865, 2020), we develop some suitable solving theories for the general four-dimensional Fokker-Planck equation. The key aim of the present study is to obtain the explicit density function expression of the stationary distribution under R 0 S > 1 . It should be noted that the existence of an ergodic stationary distribution together with the unique exact probability density function can reveal all the dynamical properties of disease persistence in both epidemiological and statistical aspects. Next, some numerical simulations together with parameter analyses are shown to support our theoretical results. Last, through comparison with other articles, results are discussed and the main conclusions are highlighted.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa