Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biol ; 41(7): e0052620, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33903225

RESUMO

How mammalian neuronal identity is progressively acquired and reinforced during development is not understood. We have previously shown that loss of RP58 (ZNF238 or ZBTB18), a BTB/POZ-zinc finger-containing transcription factor, in the mouse brain leads to microcephaly, corpus callosum agenesis, and cerebellum hypoplasia and that it is required for normal neuronal differentiation. The transcriptional programs regulated by RP58 during this process are not known. Here, we report for the first time that in embryonic mouse neocortical neurons a complex set of genes normally expressed in other cell types, such as those from mesoderm derivatives, must be actively repressed in vivo and that RP58 is a critical regulator of these repressed transcriptional programs. Importantly, gene set enrichment analysis (GSEA) analyses of these transcriptional programs indicate that repressed genes include distinct sets of genes significantly associated with glioma progression and/or pluripotency. We also demonstrate that reintroducing RP58 in glioma stem cells leads not only to aspects of neuronal differentiation but also to loss of stem cell characteristics, including loss of stem cell markers and decrease in stem cell self-renewal capacities. Thus, RP58 acts as an in vivo master guardian of the neuronal identity transcriptome, and its function may be required to prevent brain disease development, including glioma progression.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glioblastoma/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Camundongos , Neurogênese/fisiologia , Neuroglia/metabolismo , Proteínas Repressoras/genética
2.
Structure ; 29(10): 1156-1170.e6, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089653

RESUMO

Reelin operates through canonical and non-canonical pathways that mediate several aspects of brain development and function. Reelin's dimeric central fragment (CF), generated through proteolytic cleavage, is required for the lipoprotein-receptor-dependent canonical pathway activation. Here, we analyze the signaling properties of a variety of Reelin fragments and measure the differential binding affinities of monomeric and dimeric CF fragments to lipoprotein receptors to investigate the mode of canonical signal activation. We also present the cryoelectron tomography-solved dimeric structure of Reelin CF and support it using several other biophysical techniques. Our findings suggest that Reelin CF forms a covalent parallel dimer with some degree of flexibility between the two protein chains. As a result of this conformation, Reelin binds to lipoprotein receptors in a manner inaccessible to its monomeric form and is capable of stimulating canonical pathway signaling.


Assuntos
Proteína Reelina/química , Microscopia Crioeletrônica , Células HEK293 , Humanos , Domínios Proteicos , Multimerização Proteica , Receptores de LDL/metabolismo , Proteína Reelina/metabolismo , Transdução de Sinais
3.
Biomolecules ; 10(7)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610618

RESUMO

Traumatic brain injury (TBI) is a relatively common occurrence following accidents or violence, and often results in long-term cognitive or motor disability. Despite the high health cost associated with this type of injury, presently there are no effective treatments for many neurological symptoms resulting from TBI. This is due in part to our limited understanding of the mechanisms underlying brain dysfunction after injury. In this study, we used the mouse controlled cortical impact (CCI) model to investigate the effects of TBI, and focused on Reelin, an extracellular protein that critically regulates brain development and modulates synaptic activity in the adult brain. We found that Reelin expression decreases in forebrain regions after TBI, and that the number of Reelin-expressing cells decrease specifically in the hippocampus, an area of the brain that plays an important role in learning and memory. We also conducted in vitro experiments using mouse neuronal cultures and discovered that Reelin protects hippocampal neuronal cells from glutamate-induced neurotoxicity, a well-known secondary effect of TBI. Together our findings suggest that the loss of Reelin expression may contribute to neuronal death in the hippocampus after TBI, and raise the possibility that increasing Reelin levels or signaling activity may promote functional recovery.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Regulação para Baixo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Animais , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/genética , Células Cultivadas , Modelos Animais de Doenças , Ácido Glutâmico/efeitos adversos , Masculino , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína Reelina , Transdução de Sinais
4.
eNeuro ; 2(6)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26693177

RESUMO

Mutations in the TSC1 and TSC2 genes cause tuberous sclerosis complex (TSC), a genetic disease often associated with epilepsy, intellectual disability, and autism, and characterized by the presence of anatomical malformations in the brain as well as tumors in other organs. The TSC1 and TSC2 proteins form a complex that inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling. Previous animal studies demonstrated that Tsc1 or Tsc2 loss of function in the developing brain affects the intrinsic development of neural progenitor cells, neurons, or glia. However, the interplay between different cellular elements during brain development was not previously investigated. In this study, we generated a novel mutant mouse line (NEX-Tsc2) in which the Tsc2 gene is deleted specifically in postmitotic excitatory neurons of the developing forebrain. Homozygous mutant mice failed to thrive and died prematurely, whereas heterozygous mice appeared normal. Mutant mice exhibited distinct neuroanatomical abnormalities, including malpositioning of selected neuronal populations, neuronal hypertrophy, and cortical astrogliosis. Intrinsic neuronal defects correlated with increased mTORC1 signaling, whereas astrogliosis did not result from altered intrinsic signaling, since these cells were not directly affected by the gene knockout strategy. All neuronal and non-neuronal abnormalities were suppressed by continuous postnatal treatment with the mTORC1 inhibitor RAD001. The data suggest that the loss of Tsc2 and mTORC1 signaling activation in excitatory neurons not only disrupts their intrinsic development, but also disrupts the development of cortical astrocytes, likely through the mTORC1-dependent expression of abnormal signaling proteins. This work thus provides new insights into cell-autonomous and non-cell-autonomous functions of Tsc2 in brain development.


Assuntos
Epilepsia/terapia , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Prosencéfalo/crescimento & desenvolvimento , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Epilepsia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Transgênicos , Neuroglia/metabolismo , Fenótipo , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa