Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(5): 3291-3301, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747716

RESUMO

The dynamic (acoustic pressure) and kinematic (acoustic acceleration and velocity) properties of time-limited signals are studied in terms of acoustic dose metrics as might be used to assess the impact of underwater noise on marine life. The work is relevant for the study of anthropogenic transient acoustic signals, such as airguns, pile driving, and underwater explosive sources, as well as more generic transient signals from sonar systems. Dose metrics are first derived from numerical simulations of sound propagation from a seismic airgun source as specified in a Joint Industry Programme benchmark problem. Similar analyses are carried out based on at-sea acoustic measurements on the continental shelf, made with a vector sensor positioned 1.45 m off the seabed. These measurements are on transient time-limited signals from multiple underwater explosive sources at differing ranges, and from a towed, sonar source. The study demonstrates, both numerically and experimentally, that under many realistic scenarios, kinematic based acoustic dosage metrics within the water column can be evaluated using acoustic pressure measurements.

2.
J Acoust Soc Am ; 154(3): 1482-1492, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695294

RESUMO

Vector acoustic properties of a narrowband acoustic field are observed as a function of range from a source towed in waters of depth 77 m on the New England Mud Patch. At the source frequency (43 Hz), the waveguide supported three trapped modes, with mode 2 weakly excited owing to the towed source depth. The receiving sensor was positioned 1.45 m above the seafloor with a sampling range aperture of 2500 m. The vector acoustics observations enabled study of vortex regions that encompass two singular points for active acoustic intensity: the vortex point, which is co-located with a dislocation, and stagnation point. Interpretative modeling, based on the normal modes and using a geoacoustic model consistent with those emerging from studies conducted at this location, is in agreement with these measurements. Model-data comparisons were based on the first-order variables of acoustic pressure and velocity along with inverse Hankel transforms, which yield normalized horizontal wavenumber spectra, and second-order variables in the form of horizontal and vertical intensity as well as non-dimensional intensity-based ratios. These measures provide a degree of observational confirmation of some vortex region properties. Both observations and modeling point to a gradual deepening of such regions with increasing range owing to sediment attenuation.

3.
J Acoust Soc Am ; 152(6): 3648, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36586834

RESUMO

Observed near the seafloor, broadband noise emissions from a vessel passing directly above exhibit frequency bands where potential acoustic energy is greater than kinetic energy while the opposite occurs in neighboring frequency bands. The condition where the dynamic and kinematic energy forms differ in this manner is characteristic to interference involving steep angles or near-normal incidence reflection from the seafloor. Measurements are made at two experimental sites using a research vessel passing above a vector sensor, positioned ∼1.5 m above the seabed, resulting in a vessel horizontal range approaching ∼0. The data are expressed as a ratio of kinetic to potential energy in decibels and yield information on seabed properties. A model for kinetic and potential energy is developed from the method of images using a layered seabed and is used to invert data collected in Puget Sound. A higher-impedance seabed is identified via inversion, which is consistent with the thin Holocene sediments in the region. For data collected on the New England Mud Patch, the model is instead applied directly to nominal seabed parameters originating from prior studies that identify a low-speed mud layer atop a higher-speed transition layer separating the mud substrate from a sediment basement.

4.
J Acoust Soc Am ; 151(5): 3473, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35649909

RESUMO

This is an investigation of sound propagation over a muddy seabed at low grazing angles. Data were collected during the 2017 Seabed and Bottom Characterization Experiment, conducted on the New England Mud Patch, a 500 km2 area of the U.S. Eastern Continental Shelf characterized by a thick layer of muddy sediments. Sound Underwater Signals (SUS), model Mk64, were deployed at ranges of 1-15 km from a hydrophone positioned 1 m above the seafloor. SUS at the closest ranges provide measurements of the bottom reflection at low grazing angles (<3 deg). Broadband analysis from 10 Hz to 10 kHz reveals resonances in the bottom reflected signals. Comparison of the measurements to simulated signals suggest a surficial layer of mud with a sound speed lower than the underlying mud and overlying water. The low sound speed property at the water-mud interface, which persists for less than 1 m, establishes a sound duct that impacts mid-frequency sound propagation at low grazing angles. The presence of a low-speed surficial layer of mud could be universal to muddy seabeds and, hence, has strong implications for mid-frequency sound propagation wherever mud is present.


Assuntos
Sedimentos Geológicos , Modelos Teóricos , Acústica , Movimento (Física) , Fatores de Tempo , Água
5.
J Acoust Soc Am ; 149(6): 4073, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34241436

RESUMO

Approximately six years of underwater noise data recorded from the Regional Cabled Array network are examined to study long-term trends. The data originate from station HYS14 located 87 km offshore of Newport, OR. The results indicate that the third-octave band level centered at 63 Hz and attributable to shipping activity is reduced in the spring of 2020 by about 1.6 dB relative to the mean of the prior five years, owing to the reduced economic activity initiated by the COVID-19 pandemic. The results are subtle, as the noise reduction is less than the typical seasonal fluctuation associated with warming ocean surface temperatures in the summer that reduces mode excitation support at typical ship source depths, causing a repeated annual level change on the order of 4 dB at shipping frequencies. Seasonality of the noise contribution near 20 Hz from fin whales is also discussed. Corroboration of a COVID-19 effect on shipping noise is offered by an analysis of automatic identification system shipping data and shipping container activity for Puget Sound, over the same six-year period, which shows a reduction in the second quarter of 2020 by ∼19% and ∼17%, respectively, relative to the mean of the prior five years.


Assuntos
Acústica , COVID-19 , Humanos , Oregon , Pandemias , SARS-CoV-2 , Navios
6.
J Acoust Soc Am ; 150(3): 1897, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34598623

RESUMO

In ocean acoustics, shallow water propagation is conveniently described using normal mode propagation. This article proposes a framework to describe the polarization of normal modes, as measured using a particle velocity sensor in the water column. To do so, the article introduces the Stokes parameters, a set of four real-valued quantities widely used to describe polarization properties in wave physics, notably for light. Stokes parameters of acoustic normal modes are theoretically derived, and a signal processing framework to estimate them is introduced. The concept of the polarization spectrogram, which enables the visualization of the Stokes parameters using data from a single vector sensor, is also introduced. The whole framework is illustrated on simulated data as well as on experimental data collected during the 2017 Seabed Characterization Experiment. By introducing the Stokes framework used in many other fields, the article opens the door to a large set of methods developed and used in other contexts but largely ignored in ocean acoustics.

7.
J Acoust Soc Am ; 147(4): EL345, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32359320

RESUMO

The Intensity Vector Autonomous Recorder (IVAR) simultaneously measures acoustic particle velocity and pressure. IVAR was deployed during the 2017 Seabed Characterization Experiment (SBCEX) with the primary objective to study sound propagation in fine-grained, muddy sediments. In this study a Bayesian inversion framework is applied to ship underwater noise recorded by IVAR. The data are relative phase of pressure and vertical particle velocity, a quantity that is independent of the ship noise source spectrum. Inversion estimates for the sediment layer and underlying basement properties are in agreement with other reports from SBCEX.

8.
J Acoust Soc Am ; 147(4): 2383, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32359256

RESUMO

Explosions from activities such as construction, demolition, and military activities are increasingly encountered in the underwater soundscape. However, there are few scientifically rigorous data on the effects of underwater explosions on aquatic animals, including fishes. Thus, there is a need for data on potential effects on fishes collected simultaneously with data on the received signal characteristics that result in those effects. To better understand potential physical effects on fishes, Pacific sardines (Sardinops sagax) were placed in cages at mid-depth at distances of 18 to 246 m from a single mid-depth detonation of C4 explosive (4.66 kg net explosive weight). The experimental site was located in the coastal ocean with a consistent depth of approximately 19.5 m. Following exposure, potential correlations between blast acoustics and observed physical effects were examined. Acoustic metrics were calculated as a function of range, including peak pressure, sound exposure level, and integrated pressure over time. Primary effects related to exposure were damage to the swim bladder and kidney. Interestingly, the relative frequency of these two injuries displayed a non-monotonic dependence with range from the explosion in relatively shallow water. A plausible explanation connecting swim bladder expansion with negative pressure as influenced by bottom reflection is proposed.


Assuntos
Explosões , Som , Acústica , Animais , Peixes , Espectrografia do Som
9.
J Acoust Soc Am ; 146(3): 2104, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31590500

RESUMO

On Nov. 15, 2017, an intense acoustic event coincident with the disappearance of the Argentine navy submarine, ARA (Armada Argentina) San Juan, was recorded on the hydroacoustic network established to enforce compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Analysis by Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) scientists, based on two hydroacoustic and one seismic detection, provided a likely origin within an error ellipse of 19 km by 12 km; analysis based solely on the main arrival detected at the two hydroacoustic stations gave an error ellipse of ∼500 km by ∼25 km [Nielsen, Zampolli, Le Bras, Mialle, Bittner, Poplavskiy, Rozhkov, Haralabus, Tomuta, Bell, and Grenard, in European Geosciences Union General Assembly, Vol. 20, EGU2018-18559 (2018)]. The large major axis depends on uncertainty in establishing the event time, while the minor axis depends on precision in the ocean state estimate used to model propagation speed. This paper demonstrates how three-dimensional (3-D) propagation features can also be used in source triangulation, in particular when no seismic detection is available. A mode-based 3-D propagation model is implemented to reconstruct the propagation path of a 3-D arrival bathymetrically refracted from the continental slope. This additional arrival provides a third (virtual) station to decouple the location and time of the event and triangulate the event. This improvement is commensurate with the CTBTO analysis, but does not rely on the additional seismic station detection.

10.
J Acoust Soc Am ; 142(2): 1141, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28863572

RESUMO

Underwater noise from impact pile driving is studied through measurements using a vertical line array (VLA) placed at range 120 m from the pile source (water depth 7.5 m) over which bathymetry varied gradually increasing to depth 12.5 m at the VLA. The data were modeled assuming the pile impact produces a radial expansion that acts as sound source and propagates along the pile at supersonic speed. This leads to the conceptualization of the pile as a discrete, vertical line source for which frequency- and source-depth-dependent complex phasing is applied. Dominant features of the pressure time series versus measurement depth are reproduced in modeled counterparts that are linearly related. These observations include precursor arrivals for which arrival timing depends on hydrophone depth and influence of a sediment sound speed gradient on precursor amplitude. Spatial gradients of model results are taken to obtain estimates of acoustic particle velocity and vector intensity for which active intensity is studied in the time domain. Evaluation of energy streamlines based on time-integrated active intensity, and energy path lines based on instantaneous (or very-short-time integrated) active intensity reveal interesting structure in the acoustic field, including an inference as to the source depth of the precursor.

11.
J Acoust Soc Am ; 139(1): 311-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827027

RESUMO

Within an underwater acoustic waveguide, the interference among multipath arrivals causes a phase difference in orthogonal components of the particle velocity. When two components of the particle velocity are not in phase, the fluid particles follow an elliptical trajectory. This property of the acoustic field can be readily detected by a vector sensor. A non-dimensional vector quantity, the degree of circularity, is used to quantify how much the trajectory resembles a circle. In this paper, vector sensor measurements collected during the 2013 Target and Reverberation Experiment are used to demonstrate the effect of multipath interference on the degree of circularity. Finally, geoacoustic properties representing the sandy sediment at the experimental site are inverted by minimization of a cost function, which quantifies the deviation between the measured and modeled degree of circularity.

12.
J Acoust Soc Am ; 137(6): 3544-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26093441

RESUMO

Underwater noise from vibratory pile driving was observed using a vertical line array placed at range 16 m from the pile source (water depth 7.5 m), and using single hydrophones at range 417 m on one transect, and range 207 and 436 m on another transect running approximately parallel to a sloping shoreline. The dominant spectral features of the underwater noise are related to the frequency of the vibratory pile driving hammer (typically 15-35 Hz), producing spectral lines at intervals of this frequency. The mean-square pressure versus depth is subsequently studied in third-octave bands. Depth and frequency variations of this quantity observed at the vertical line array are well modeled by a field consisting of an incoherent sum of sources distributed over the water column. Adiabatic mode theory is used to propagate this field to greater ranges and model the observations made along the two depth-varying transects. The effect of shear in the seabed, although small, is also included. Bathymetric refraction on the transect parallel to the shoreline reduced mean-square pressure levels at the 436-m measurement site.

13.
J Acoust Soc Am ; 134(1): 109-18, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23862789

RESUMO

Elliptical particle motion, often encountered in acoustic fields containing interference between a source signal and its reflections, can be quantified by the degree of circularity, a vector quantity formulated from acoustic particle velocity, or vector intensity measurements. Acoustic analysis based on the degree of circularity is expected to find application in ocean waveguides as its spatial dependence relates to the acquisition geometry, water column sound speed, surface conditions, and bottom properties. Vector sensor measurements from a laboratory experiment are presented to demonstrate the depth dependence of both the degree of circularity and an approximate formulation based on vertical intensity measurements. The approximation is applied to vertical intensity field measurements made in a 2006 experiment off the New Jersey coast (in waters 80 m deep) to demonstrate the effect of sediment structure on the range dependence of the degree of circularity. The mathematical formulation presented here establishes the framework to readily compute the degree of circularity from experimental measurements; the experimental examples are provided as evidence of the spatial and frequency dependence of this fundamental vector property.

14.
J Acoust Soc Am ; 134(3): 1843-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23967918

RESUMO

Results of an experiment to measure vertical spatial coherence from acoustic paths interacting once with the sea surface but at perpendicular azimuth angles are presented. The measurements were part of the Shallow Water 2006 program that took place off the coast of New Jersey in August 2006. An acoustic source, frequency range 6-20 kHz, was deployed at depth 40 m, and signals were recorded on a 1.4 m long vertical line array centered at depth 25 m and positioned at range 200 m. The vertical array consisted of four omni-directional hydrophones and vertical coherences were computed between pairs of these hydrophones. Measurements were made over four source-receiver bearing angles separated by 90°, during which sea surface conditions remained stable and characterized by a root-mean-square wave height of 0.17 m and a mixture of swell and wind waves. Vertical coherences show a statistically significant difference depending on source-receiver bearing when the acoustic frequency is less than about 12 kHz, with results tending to fade at higher frequencies. This paper presents field observations and comparisons of these observations with two modeling approaches, one based on bistatic forward scattering and the other on a rough surface parabolic wave equation utilizing synthetic sea surfaces.


Assuntos
Acústica , Água do Mar , Som , Acústica/instrumentação , Desenho de Equipamento , Modelos Teóricos , Movimento (Física) , Oceanos e Mares , Espalhamento de Radiação , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Propriedades de Superfície , Fatores de Tempo
15.
JASA Express Lett ; 3(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555772

RESUMO

The 75 Hz Kauai-Beacon source is well-situated for observing the North Pacific Ocean acoustically, and ongoing efforts enable transmissions and analysis of broadband signals in 2023 and beyond. This is the first demonstration of acoustic receiving along paths to Wake Island (∼3500 km) and Monterey Bay (∼4000 km). The 44 received m-sequence waveforms exhibit excellent phase stability with processing gain approaching the maximum theoretical gain evaluated over the 20 min signal transmission duration. The article concludes with a discussion on the future source utility and highlights research topics of interest, including observed Doppler (waveform dilation), thermometry, and tomography.

16.
J Acoust Soc Am ; 131(3): 2023-35, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22423699

RESUMO

Acoustic intensity is a vector quantity described by collocated measurements of acoustic pressure and particle velocity. In an ocean waveguide, the interaction among multipath arrivals of propagating wavefronts manifests unique behavior in the acoustic intensity. The instantaneous intensity, or energy flux, contains two components: a propagating and non-propagating energy flux. The instantaneous intensity is described by the time-dependent complex intensity, where the propagating and non-propagating energy fluxes are modulated by the active and reactive intensity envelopes, respectively. Properties of complex intensity are observed in data collected on a vertical line array during the transverse acoustic variability experiment (TAVEX) that took place in August of 2008, 17 km northeast of the Ieodo ocean research station in the East China Sea, 63 m depth. Parabolic equation (PE) simulations of the TAVEX waveguide supplement the experimental data set and provide a detailed analysis of the spatial structure of the complex intensity. A normalized intensity quantity, the pressure-intensity index, is used to describe features of the complex intensity which have a functional relationship between range and frequency, related to the waveguide invariant. The waveguide invariant is used to describe the spatial structure of intensity in the TAVEX waveguide using data taken at discrete ranges.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa