Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 116(6): 1681-1695, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688791

RESUMO

Plant legumains are crucial for processing seed storage proteins and are critical regulators of plant programmed cell death. Although research on legumains boosted recently, little is known about their activity regulation. In our study, we used pull-down experiments to identify AtCYT6 as a natural inhibitor of legumain isoform ß (AtLEGß) in Arabidopsis thaliana. Biochemical analysis revealed that AtCYT6 inhibits both AtLEGß and papain-like cysteine proteases through two separate cystatin domains. The N-terminal domain inhibits papain-like proteases, while the C-terminal domain inhibits AtLEGß. Furthermore, we showed that AtCYT6 interacts with legumain in a substrate-like manner, facilitated by a conserved asparagine residue in its reactive center loop. Complex formation was additionally stabilized by charged exosite interactions, contributing to pH-dependent inhibition. Processing of AtCYT6 by AtLEGß suggests a context-specific regulatory mechanism with implications for plant physiology, development, and programmed cell death. These findings enhance our understanding of AtLEGß regulation and its broader physiological significance.


Assuntos
Arabidopsis , Papaína , Papaína/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína Endopeptidases/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Plantas/metabolismo
2.
Biochemistry ; 62(23): 3420-3429, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37989209

RESUMO

Cystatins encode a high functional variability not only because of their ability to inhibit different classes of proteases but also because of their propensity to form oligomers and amyloid fibrils. Phytocystatins, essential regulators of protease activity in plants, specifically inhibit papain-like cysteine proteases (PLCPs) and legumains through two distinct cystatin domains. Mammalian cystatins can form amyloid fibrils; however, the potential for amyloid fibril formation of phytocystatins remains unknown. In this study, we demonstrate that Arabidopsis thaliana phytocystatin 6 (AtCYT6) exists as a mixture of monomeric, dimeric, and oligomeric forms in solution. Noncovalent oligomerization was facilitated by the N-terminal cystatin domain, while covalent dimerization occurred through disulfide bond formation in the interdomain linker. The noncovalent dimeric form of AtCYT6 retained activity against its target proteases, papain and legumain, albeit with reduced inhibitory potency. Additionally, we observed the formation of amyloid fibrils by AtCYT6 under acidic pH conditions and upon heating. The amyloidogenic potential could be attributed to the AtCYT6's N-terminal domain (AtCYT6-NTD). Importantly, AtCYT6 amyloid fibrils harbored inhibitory activities against both papain and legumain. These findings shed light on the oligomerization and amyloidogenic behavior of AtCYT6, expanding our understanding of phytocystatin biology and its potential functional implications for plant protease regulation.


Assuntos
Arabidopsis , Cistatinas , Animais , Papaína/química , Amiloide/química , Cistatinas/química , Cistatinas/farmacologia , Peptídeo Hidrolases , Mamíferos
3.
J Biol Chem ; 298(10): 102502, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116553

RESUMO

Under pathophysiologic conditions such as Alzheimer's disease and cancer, the endolysosomal cysteine protease legumain was found to translocate to the cytosol, the nucleus, and the extracellular space. These noncanonical localizations demand for a tight regulation of legumain activity, which is in part conferred by protein inhibitors. While there is a significant body of knowledge on the interaction of human legumain with endogenous cystatins, only little is known on its regulation by fungal mycocypins. Mycocypins are characterized by (i) versatile, plastic surface loops allowing them to inhibit different classes of enzymes and (ii) a high resistance toward extremes of pH and temperature. These properties make mycocypins attractive starting points for biotechnological and medical applications. In this study, we show that mycocypins utilize an adaptable reactive center loop to target the active site of legumain in a substrate-like manner. The interaction was further stabilized by variable, isoform-specific exosites, converting the substrate recognition into inhibition. Additionally, we found that selected mycocypins were capable of covalent complex formation with legumain by forming a disulfide bond to the active site cysteine. Furthermore, our inhibition studies with other clan CD proteases suggested that mycocypins may serve as broad-spectrum inhibitors of clan CD proteases. Our studies uncovered the potential of mycocypins as a new scaffold for drug development, providing the basis for the design of specific legumain inhibitors.


Assuntos
Cistatinas , Cisteína Endopeptidases , Humanos , Cisteína Endopeptidases/metabolismo , Cistatinas/metabolismo , Domínio Catalítico , Peptídeo Hidrolases/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982466

RESUMO

While primarily found in endo-lysosomal compartments, the cysteine protease legumain can also translocate to the cell surface if stabilized by the interaction with the RGD-dependent integrin receptor αVß3. Previously, it has been shown that legumain expression is inversely related to BDNF-TrkB activity. Here we show that legumain can conversely act on TrkB-BDNF by processing the C-terminal linker region of the TrkB ectodomain in vitro. Importantly, when in complex with BDNF, TrkB was not cleaved by legumain. Legumain-processed TrkB was still able to bind BDNF, suggesting a potential scavenger function of soluble TrkB towards BDNF. The work thus presents another mechanistic link explaining the reciprocal TrkB signaling and δ-secretase activity of legumain, with relevance for neurodegeneration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cisteína Proteases , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293424

RESUMO

Legumain is a lysosomal cysteine protease with strict specificity for cleaving after asparagine residues. By sequence comparison, legumain belongs to MEROPS clan CD of the cysteine proteases, which indicates its structural and mechanistic relation to caspases. Contrasting caspases, legumain harbors a pH-dependent ligase activity in addition to the protease activity. Although we already have a significant body of knowledge on the catalytic activities of legumain, many mechanistic details are still elusive. In this study, we provide evidence that extended active site residues and substrate conformation are steering legumain activities. Biochemical experiments and bioinformatics analysis showed that the catalytic Cys189 and His148 residues are regulated by sterically close Glu190, Ser215 and Asn42 residues. While Glu190 serves as an activity brake, Ser215 and Asn42 have a favorable effect on legumain protease activity. Mutagenesis studies using caspase-9 as model enzyme additionally showed that a similar Glu190 activity brake is also implemented in the caspases. Furthermore, we show that the substrate's conformational flexibility determines whether it will be hydrolyzed or ligated by legumain. The functional understanding of the extended active site residues and of substrate prerequisites will allow us to engineer proteases with increased enzymatic activity and better ligase substrates, with relevance for biotechnological applications.


Assuntos
Asparagina , Caspases , Domínio Catalítico , Caspase 9 , Caspases/genética , Ligases
6.
J Biol Chem ; 295(37): 13047-13064, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719006

RESUMO

The vacuolar cysteine protease legumain plays important functions in seed maturation and plant programmed cell death. Because of their dual protease and ligase activity, plant legumains have become of particular biotechnological interest, e.g. for the synthesis of cyclic peptides for drug design or for protein engineering. However, the molecular mechanisms behind their dual protease and ligase activities are still poorly understood, limiting their applications. Here, we present the crystal structure of Arabidopsis thaliana legumain isoform ß (AtLEGß) in its zymogen state. Combining structural and biochemical experiments, we show for the first time that plant legumains encode distinct, isoform-specific activation mechanisms. Whereas the autocatalytic activation of isoform γ (AtLEGγ) is controlled by the latency-conferring dimer state, the activation of the monomeric AtLEGß is concentration independent. Additionally, in AtLEGß the plant-characteristic two-chain intermediate state is stabilized by hydrophobic rather than ionic interactions, as in AtLEGγ, resulting in significantly different pH stability profiles. The crystal structure of AtLEGß revealed unrestricted nonprime substrate binding pockets, consistent with the broad substrate specificity, as determined by degradomic assays. Further to its protease activity, we show that AtLEGß exhibits a true peptide ligase activity. Whereas cleavage-dependent transpeptidase activity has been reported for other plant legumains, AtLEGß is the first example of a plant legumain capable of linking free termini. The discovery of these isoform-specific differences will allow us to identify and rationally design efficient ligases with application in biotechnology and drug development.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Cisteína Endopeptidases/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo
7.
Plant Cell ; 30(3): 686-699, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29453229

RESUMO

The vacuolar cysteine protease legumain can cleave and selectively rebuild peptide bonds, thereby vastly expanding the sequential repertoire of biomolecules. In this context, plant legumains have recently attracted particular interest. Furthermore, legumains have important roles in many physiological processes, including programmed cell death. Their efficient peptide bond ligase activity has gained tremendous interest in the design of cyclic peptides for drug design. However, the mechanistic understanding of these dual activities is incomplete and partly conflicting. Here, we present the crystal structure of a plant legumain, Arabidopsis thaliana isoform-γ (AtLEGγ). Employing a conserved legumain fold, the plant legumain AtLEGγ revealed unique mechanisms of autoactivation, including a plant-specific two-chain activation state, which remains conformationally stable at neutral pH, which is a prerequisite for full ligase activity and survival in different cell compartments. The charge distribution around the α6-helix mediates the pH-dependent dimerization and serves as a gatekeeper for the active site, thus regulating its protease and ligase activity.


Assuntos
Arabidopsis/metabolismo , Cisteína Endopeptidases/química , Concentração de Íons de Hidrogênio , Isoformas de Proteínas/metabolismo , Especificidade por Substrato
8.
Allergy ; 76(1): 210-222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32621318

RESUMO

BACKGROUND: Allergen-specific immunotherapy via the skin targets a tissue rich in antigen-presenting cells, but can be associated with local and systemic side effects. Allergen-polysaccharide neoglycogonjugates increase immunization efficacy by targeting and activating dendritic cells via C-type lectin receptors and reduce side effects. OBJECTIVE: We investigated the immunogenicity, allergenicity, and therapeutic efficacy of laminarin-ovalbumin neoglycoconjugates (LamOVA). METHODS: The biological activity of LamOVA was characterized in vitro using bone marrow-derived dendritic cells. Immunogenicity and therapeutic efficacy were analyzed in BALB/c mice. Epicutaneous immunotherapy (EPIT) was performed using fractional infrared laser ablation to generate micropores in the skin, and the effects of LamOVA on blocking IgG, IgE, cellular composition of BAL, lung, and spleen, lung function, and T-cell polarization were assessed. RESULTS: Conjugation of laminarin to ovalbumin reduced its IgE binding capacity fivefold and increased its immunogenicity threefold in terms of IgG generation. EPIT with LamOVA induced significantly higher IgG levels than OVA, matching the levels induced by s.c. injection of OVA/alum (SCIT). EPIT was equally effective as SCIT in terms of blocking IgG induction and suppression of lung inflammation and airway hyperresponsiveness, but SCIT was associated with higher levels of therapy-induced IgE and TH2 cytokines. EPIT with LamOVA induced significantly lower local skin reactions during therapy compared to unconjugated OVA. CONCLUSION: Conjugation of ovalbumin to laminarin increased its immunogenicity while at the same time reducing local side effects. LamOVA EPIT via laser-generated micropores is safe and equally effective compared to SCIT with alum, without the need for adjuvant.


Assuntos
Asma , Pneumonia , beta-Glucanas , Alérgenos , Animais , Asma/terapia , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina
9.
Anal Chem ; 92(4): 2961-2971, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31951383

RESUMO

Bottom-up mass spectrometry-based proteomics utilizes proteolytic enzymes with well characterized specificities to generate peptides amenable for identification by high-throughput tandem mass spectrometry. Trypsin, which cuts specifically after the basic residues lysine and arginine, is the predominant enzyme used for proteome digestion, although proteases with alternative specificities are required to detect sequences that are not accessible after tryptic digest. Here, we show that the human cysteine protease legumain exhibits a strict substrate specificity for cleavage after asparagine and aspartic acid residues during in-solution digestions of proteomes extracted from Escherichia coli, mouse embryonic fibroblast cell cultures, and Arabidopsis thaliana leaves. Generating peptides highly complementary in sequence, yet similar in their biophysical properties, legumain (as compared to trypsin or GluC) enabled complementary proteome and protein sequence coverage. Importantly, legumain further enabled the identification and enrichment of protein N-termini not accessible in GluC- or trypsin-digested samples. Legumain cannot cleave after glycosylated Asn residues, which enabled the robust identification and orthogonal validation of N-glycosylation sites based on alternating sequential sample treatments with legumain and PNGaseF and vice versa. Taken together, we demonstrate that legumain is a practical, efficient protease for extending the proteome and sequence coverage achieved with trypsin, with unique possibilities for the characterization of post-translational modification sites.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteoma/metabolismo , Animais , Arabidopsis/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/isolamento & purificação , Escherichia coli/metabolismo , Humanos , Camundongos , Folhas de Planta/metabolismo , Proteoma/química , Proteômica
10.
J Biol Chem ; 293(23): 8934-8946, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29628443

RESUMO

Legumain is a dual-function protease-peptide ligase whose activities are of great interest to researchers studying plant physiology and to biotechnological applications. However, the molecular mechanisms determining the specificities for proteolysis and ligation are unclear because structural information on the substrate recognition by a fully activated plant legumain is unavailable. Here, we present the X-ray structure of Arabidopsis thaliana legumain isoform γ (AtLEGγ) in complex with the covalent peptidic Ac-YVAD chloromethyl ketone (CMK) inhibitor targeting the catalytic cysteine. Mapping of the specificity pockets preceding the substrate-cleavage site explained the known substrate preference. The comparison of inhibited and free AtLEGγ structures disclosed a substrate-induced disorder-order transition with synergistic rearrangements in the substrate-recognition sites. Docking and in vitro studies with an AtLEGγ ligase substrate, sunflower trypsin inhibitor (SFTI), revealed a canonical, protease substrate-like binding to the active site-binding pockets preceding and following the cleavage site. We found the interaction of the second residue after the scissile bond, P2'-S2', to be critical for deciding on proteolysis versus cyclization. cis-trans-Isomerization of the cyclic peptide product triggered its release from the AtLEGγ active site and prevented inadvertent cleavage. The presented integrative mechanisms of proteolysis and ligation (transpeptidation) explain the interdependence of legumain and its preferred substrates and provide a rational framework for engineering optimized proteases, ligases, and substrates.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cisteína Endopeptidases/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/química , Domínio Catalítico , Cristalografia por Raios X , Cisteína Endopeptidases/química , Modelos Moleculares , Conformação Proteica , Proteólise , Especificidade por Substrato
11.
J Biol Chem ; 293(34): 13151-13165, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29967063

RESUMO

Protein activity is often regulated by altering the oligomerization state. One mechanism of multimerization involves domain swapping, wherein proteins exchange parts of their structures and thereby form long-lived dimers or multimers. Domain swapping has been specifically observed in amyloidogenic proteins, for example the cystatin superfamily of cysteine protease inhibitors. Cystatins are twin-headed inhibitors, simultaneously targeting the lysosomal cathepsins and legumain, with important roles in cancer progression and Alzheimer's disease. Although cystatin E is the most potent legumain inhibitor identified so far, nothing is known about its propensity to oligomerize. In this study, we show that conformational destabilization of cystatin E leads to the formation of a domain-swapped dimer with increased conformational stability. This dimer was active as a legumain inhibitor by forming a trimeric complex. By contrast, the binding sites toward papain-like proteases were buried within the cystatin E dimer. We also showed that the dimers could further convert to amyloid fibrils. Unexpectedly, cystatin E amyloid fibrils contained functional protein, which inhibited both legumain and papain-like enzymes. Fibril formation was further regulated by glycosylation. We speculate that cystatin amyloid fibrils might serve as a binding platform to stabilize the pH-sensitive legumain and cathepsins in the extracellular environment, contributing to their physiological and pathological functions.


Assuntos
Amiloide/química , Cistatina M/química , Cistatina M/metabolismo , Papaína/antagonistas & inibidores , Multimerização Proteica , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
12.
Int J Mol Sci ; 18(10)2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29035299

RESUMO

Birch pollen allergy affects more than 20% of the European allergic population. On a molecular level, birch pollen allergy can be linked to the two dominant allergens Bet v 1 and Bet v 2. Bet v 2 belongs to the profilin family, which is abundant in the plant kingdom. Importantly, the homologous plant profilins have a conserved cysteine motif with a currently unknown functional relevance. In particular, it is unknown whether the motif is relevant for disulfide formation and to what extent it would affect the profilins' structural, functional and immunological properties. Here we present crystal structures of Bet v 2 in the reduced and the oxidized state, i.e., without and with a disulfide bridge. Despite overall structural similarity, the two structures distinctly differ at their termini which are stabilized to each other in the oxidized, i.e., disulfide-linked state. These structural differences translate into differences in their proteolytic resistance. Whereas the oxidized Bet v 2 is rather resistant towards the endolysosomal protease cathepsin S, it is rapidly degraded in the reduced form. By contrast, both Bet v 2 forms exhibit similar immunological properties as evidenced by their binding to IgE antibodies from birch pollen allergic patients and by their ability to trigger histamine release in a humanized rat basophilic leukemia cells (RBL) assay, independent of the presence or absence of the disulfide bridge. Taken together our findings suggest that the oxidized Bet v 2 conformation should be the relevant species, with a much longer retention time to trigger immune responses.


Assuntos
Antígenos de Plantas/química , Antígenos de Plantas/metabolismo , Catepsinas/metabolismo , Modelos Moleculares , Conformação Proteica , Antígenos de Plantas/genética , Clonagem Molecular , Endossomos/metabolismo , Lisossomos/metabolismo , Oxirredução , Proteólise , Soluções , Relação Estrutura-Atividade
13.
Int J Mol Sci ; 18(6)2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594355

RESUMO

Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates.


Assuntos
Alérgenos/imunologia , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Alérgenos/metabolismo , Animais , Antígenos de Plantas/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Lisossomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Espectrometria de Massas , Camundongos , Proteólise , Pyroglyphidae/imunologia , Proteínas Recombinantes/imunologia
14.
Proc Natl Acad Sci U S A ; 110(27): 10940-5, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23776206

RESUMO

The cysteine protease legumain plays important functions in immunity and cancer at different cellular locations, some of which appeared conflicting with its proteolytic activity and stability. Here, we report crystal structures of legumain in the zymogenic and fully activated form in complex with different substrate analogs. We show that the eponymous asparagine-specific endopeptidase activity is electrostatically generated by pH shift. Completely unexpectedly, the structure points toward a hidden carboxypeptidase activity that develops upon proteolytic activation with the release of an activation peptide. These activation routes reconcile the enigmatic pH stability of legumain, e.g., lysosomal, nuclear, and extracellular activities with relevance in immunology and cancer. Substrate access and turnover is controlled by selective protonation of the S1 pocket (KM) and the catalytic nucleophile (kcat), respectively. The multibranched and context-dependent activation process of legumain illustrates how proteases can act not only as signal transducers but as decision makers.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Domínio Catalítico/genética , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Ativação Enzimática/genética , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Estabilidade Enzimática/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética
15.
Angew Chem Int Ed Engl ; 54(10): 2917-21, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25630877

RESUMO

Peptide ligases expand the repertoire of genetically encoded protein architectures by synthesizing new peptide bonds, energetically driven by ATP or NTPs. Here, we report the discovery of a genuine ligase activity in human legumain (AEP) which has important roles in immunity and tumor progression that were believed to be due to its established cysteine protease activity. Defying dogma, the ligase reaction is independent of the catalytic cysteine but exploits an endogenous energy reservoir that results from the conversion of a conserved aspartate to a metastable aspartimide. Legumain's dual protease-ligase activities are pH- and thus localization controlled, dominating at acidic and neutral pH, respectively. Their relevance includes reversible on-off switching of cystatin inhibitors and enzyme (in)activation, and may affect the generation of three-dimensional MHC epitopes. The aspartate-aspartimide (succinimide) pair represents a new paradigm of coupling endergonic reactions in ATP-scarce environments.


Assuntos
Ácido Aspártico/análogos & derivados , Cisteína Endopeptidases/química , Ligases/química , Ácido Aspártico/química , Humanos , Modelos Moleculares , Conformação Proteica
16.
Artigo em Inglês | MEDLINE | ID: mdl-22232165

RESUMO

Localized mainly to endo/lysosomes, legumain plays an important role in exogenous antigen processing and presentation. The cysteine protease legumain, also known as asparaginyl endopepetidase AEP, is synthesized as a zymogen and is known to undergo pH-dependent autoproteolytic activation whereby N-terminal and C-terminal propeptides are released. However, important mechanistic details of this pH-dependent activation as well as the characteristic pH activity profile remain unclear. Here, it is shown that all but one of the autocatalytic cleavage events occur in trans, with only the release of the C-terminal propeptide being relevant to enzymatic activity. An intriguing super-activation event that appears to be exclusively conformational in nature and enhances the enzymatic activity of proteolytically fully processed legumain by about twofold was also found. Accepting asparagines and, to lesser extent, aspartic acid in P1, super-activated legumain exhibits a marked pH dependence that is governed by the P1 residue of its substrate and conformationally stabilizing factors such as temperature or ligands. The crystallization and preliminary diffraction data analysis of active legumain are presented, which form an important basis for further studies that should clarify fundamental aspects of activation, activity and inactivation of legumain, which is a key target in (auto-)immunity and cancer.


Assuntos
Cisteína Endopeptidases/química , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Ativação Enzimática , Humanos , Concentração de Íons de Hidrogênio , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
17.
Methods Mol Biol ; 2447: 35-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583771

RESUMO

Plant proteases of the legumain-type are key players in many processes along the plant life cycle. In particular, legumains are especially important in plant programmed cell death and the processing and maturation of seed storage proteins within the vacuole. Plant legumains are therefore synonymously called vacuolar processing enzymes (VPEs). Because of their dual protease and cyclase activities, plant legumains are of great interest to biotechnological applications, e.g., for the development of cyclic peptides for drug design. Despite this high interest by the scientific community, the recombinant expression of plant legumains proved challenging due to several posttranslational modifications, including (1) the formation of structurally critical disulfide bonds, (2) activation via pH-dependent proteolytic processing, and (3) stabilization by varying degrees of glycosylation. Recently we could show that LEXSY is a robust expression system for the production of plant legumains. Here we provide a general protocol for the recombinant expression of plant legumains in Leishmania cells. We further included detailed procedures for legumain purification, activation and subsequent activity assays and additionally note specific considerations with regard to isoform specific activation intermediates. This protocol serves as a universal strategy for different legumain isoforms from different source organisms.


Assuntos
Leishmania , Peptídeo Hidrolases , Cisteína Endopeptidases , Leishmania/genética , Leishmania/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Isoformas de Proteínas , Vacúolos/metabolismo
18.
ACS Catal ; 11(19): 11885-11896, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34621593

RESUMO

Protein modification by enzymatic breaking and forming of peptide bonds significantly expands the repertoire of genetically encoded protein sequences. The dual protease-ligase legumain exerts the two opposing activities within a single protein scaffold. Primarily localized to the endolysosomal system, legumain represents a key enzyme in the generation of antigenic peptides for subsequent presentation on the MHCII complex. Here we show that human legumain catalyzes the ligation and cyclization of linear peptides at near-neutral pH conditions, where legumain is intrinsically unstable. Conformational stabilization significantly enhanced legumain's ligase activity, which further benefited from engineering the prime substrate recognition sites for improved affinity. Additionally, we provide evidence that specific legumain activation states allow for differential regulation of its activities. Together these results set the basis for engineering legumain proteases and ligases with applications in biotechnology and drug development.

19.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 6): 419-427, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31204688

RESUMO

Chagas disease, which is caused by Trypanosoma cruzi, affects more than six million people worldwide. Cruzain is the major cysteine protease involved in the survival of this parasite. Here, the expression, purification and crystallization of this enzyme are reported. The cruzain crystals diffracted to 1.2 Šresolution, yielding two novel cruzain structures: apocruzain and cruzain bound to the reversible covalent inhibitor S-methyl thiomethanesulfonate. Mass-spectrometric experiments confirmed the presence of a methylthiol group attached to the catalytic cysteine. Comparison of these structures with previously published structures indicates the rigidity of the cruzain structure. These results provide further structural information about the enzyme and may help in new in silico studies to identify or optimize novel prototypes of cruzain inhibitors.


Assuntos
Apoproteínas/química , Apoproteínas/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Desenho de Fármacos , Metanossulfonato de Metila/análogos & derivados , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/química , Metanossulfonato de Metila/química , Metanossulfonato de Metila/metabolismo , Modelos Moleculares , Conformação Proteica
20.
ACS Catal ; 7(9): 5585-5593, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28932620

RESUMO

The cysteine protease enzyme legumain hydrolyzes peptide bonds with high specificity after asparagine and under more acidic conditions after aspartic acid [Baker E. N.J. Mol. Biol.1980, 141, 441-484; Baker E. N.; J. Mol. Biol.1977, 111, 207-210; Drenth J.; Biochemistry1976, 15, 3731-3738; Menard R.; J. Cell. Biochem.1994, 137; Polgar L.Eur. J. Biochem.1978, 88, 513-521; Storer A. C.; Methods Enzymol.1994, 244, 486-500. Remarkably, legumain additionally exhibits ligase activity that prevails at pH > 5.5. The atomic reaction mechanisms including their pH dependence are only partly understood. Here we present a density functional theory (DFT)-based quantum mechanics/molecular mechanics (QM/MM) study of the detailed reaction mechanism of both activities for human legumain in solution. Contrasting the situation in other papain-like proteases, our calculations reveal that the active site Cys189 must be present in the protonated state for a productive nucleophilic attack and simultaneous rupture of the scissile peptide bond, consistent with the experimental pH profile of legumain-catalyzed cleavages. The resulting thioester intermediate (INT1) is converted by water attack on the thioester into a second intermediate, a diol (INT2), which is released by proton abstraction by Cys189. Surprisingly, we found that ligation is not the exact reverse of the proteolysis but can proceed via two distinct routes. Whereas the transpeptidation route involves aminolysis of the thioester (INT1), at pH 6 a cysteine-independent, histidine-assisted ligation route was found. Given legumain's important roles in immunity, cancer, and neurodegenerative diseases, our findings open up possibilities for targeted drug design in these fields.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa