Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ChemSusChem ; : e202401558, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212085

RESUMO

Li-CO2 batteries have been recognized as an emerging technology for energy storage systems owing to their high theoretical specific energy and environmentally friendly CO2 fixation ability. However, their development for applications requires a high energy efficiency and long cycle-life, this is currently limited to the formation of wide-bandgap insulator Li2CO3 during discharge. Here, nanoparticle Pd supported on reduced graphene oxide (rGO) is utilized as cathodes for Li-CO2 batteries, Pd nanoparticles as active centers significantly enhance CO2RR/CO2ER reaction activity, which can support the fast formation and decomposition of Li2CO3 in organic electrolytes and achieve a high discharge capacity of 7500 mAh g-1. It also performs remarkably high cycling stability of over 500 cycles with a long cycle-life of 5000 hours. The observed super electrochemical performance is attributable to the thick electrode design and uniform distribution of ultrafine catalyst nanoparticle Pd. When Li2CO3 is adsorbed on Pd particle, the Li-O bond in Li2CO3 will be elongated due to the interactions of two nucleophilic O atoms with Pd, resulting in a weakening of the Li-O bond and activation of Li2CO3. Our work suggests a way to design catalysts with high activity that can be used to activate the performance of Li-CO2 batteries.

2.
ACS Appl Mater Interfaces ; 15(42): 49116-49122, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37815493

RESUMO

In recent years, functional electrolyte additives have been widely studied during the CO2 evolution reaction (CO2ER) and CO2 reduction reaction (CO2RR) processes for Li-CO2 batteries. Owing to different concerns, functions of these additives are also multiple and limited. In this work, the multiple impacts of functional electrolyte additives for Li-CO2 batteries are discussed. N-phenylpyrrolidine (PPD) and 1-(3-bromophenyl) pyrrole (Br-PPD) are investigated as additives successively. First, the corresponding charging potential during the CO2ER process can be reduced to 3.65 V with PPD; then the Li||Li symmetric cells with Br-PPD possess a superior long-term cycling of 800 h benefited from a stable solid electrolyte interphase (SEI) on the surface of a Li metal by using a Li anode protected with bromine functional groups. In Br-PPD-based Li-CO2 cells, the charging potential can be maintained at 3.70 V for 120 cycles even with a Super P cathode. In this work, the relationship between the structural properties of organic molecules and their electrochemical applications is discussed and investigated. This is essential for the targeted design and preparation of additives in rechargeable batteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa