Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Can J Neurol Sci ; 49(5): 651-661, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34353391

RESUMO

BACKGROUND AND OBJECTIVE: Hereditary spastic paraplegia (HSP) is a heterogeneous neurodegenerative disorder with lower-limb spasticity and weakness. Different patterns of inheritance have been identified in HSP. Most autosomal-dominant HSPs (AD-HSPs) are associated with mutations of the SPAST gene (SPG4), leading to a pure form of HSP with variable age-at-onset (AAO). Anticipation, an earlier onset of disease, as well as aggravation of symptoms in successive generations, may be correlated to SPG4. Herein, we suggested that anticipation might be a relatively common finding in SPG4 families. METHODS: Whole-exome sequencing was done on DNA of 14 unrelated Iranian AD-HSP probands. Data were analyzed, and candidate variants were PCR-amplified and sequenced by the Sanger method, subsequently checked in family members to co-segregation analysis. Multiplex ligation-dependent probe amplification (MLPA) was done for seven probands. Clinical features of the probands were recorded, and the probable anticipation was checked in these families. Other previous reported SPG4 families were investigated to anticipation. RESULTS: Our findings showed that SPG4 was the common subtype of HSP; three families carried variants in the KIF5A, ATL1, and MFN2 genes, while five families harbored mutations in the SPAST gene. Clinical features of only SPG4 families indicated decreasing AAO in affected individuals of the successive generations, and this difference was significant (p-value <0.05). CONCLUSION: It seems SPAST will be the first candidate gene in families that manifests a pure form of AD-HSP and anticipation. Therefore, it may be a powerful situation of genotype-phenotype correlation. However, the underlying mechanism of anticipation in these families is not clear yet.


Assuntos
Paraplegia Espástica Hereditária , Adenosina Trifosfatases/genética , Proteínas de Ligação ao GTP/genética , Humanos , Irã (Geográfico) , Cinesinas/genética , Proteínas de Membrana/genética , Mutação/genética , Fenótipo , Paraplegia Espástica Hereditária/genética , Espastina/genética
2.
Am J Med Genet A ; 185(2): 440-452, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33215859

RESUMO

Coenzyme Q10/ COQ10 , an essential cofactor in the electron-transport chain is involved in ATP production. Primary COQ10 deficiency is clinically and genetically a heterogeneous group of mitochondrial disorders caused by defects in the COQ10 synthesis pathway. Its mode of inheritance is autosomal recessive and it is characterized by metabolic abnormalities and multisystem involvement including neurological features. Mutations in 10 genes have been identified concerning this group of diseases, so far. Among those, variants of the COQ7 gene are very rare and confined to three patients with Asian ancestry. Here, we present the clinical features and results of whole-exome sequencing (WES) of three Iranian unrelated families affected by primary COQ10 deficiency. Three homozygous variants in COQ2, COQ4, and COQ7 genes were identified. Candidate variants of the COQ2 and COQ4 genes were novel and associated with the cerebellar signs and multisystem involvement, whereas, the known variant in COQ7 was associated with a mild phenotype that was initially diagnosed as hereditary spastic paraplegia (HSP). This variant has already been reported in a Canadian girl with similar presentations that also originated from Iran suggesting both patients may share a common ancestor. Due to extensive heterogeneity in this group of disorders, and overlap with other mitochondrial/neurological disorders, WES may be helpful to distinguish primary coenzyme Q10 deficiency from other similar conditions. Given that some features of primary coenzyme Q10 deficiency may improve with exogenous COQ10 , early diagnosis is very important.


Assuntos
Alquil e Aril Transferases/genética , Ataxia/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Oxigenases de Função Mista/genética , Debilidade Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ataxia/epidemiologia , Ataxia/patologia , Canadá/epidemiologia , Criança , Feminino , Predisposição Genética para Doença , Humanos , Recém-Nascido , Irã (Geográfico)/epidemiologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/patologia , Debilidade Muscular/epidemiologia , Debilidade Muscular/patologia , Mutação/genética , Ubiquinona/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa