Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(13): 6694-6734, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747082

RESUMO

Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.

2.
Angew Chem Int Ed Engl ; : e202406552, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766881

RESUMO

Triply interlocked [2]catenane complexes featuring two identical, mechanically interlocked units are extraordinarily rare chemical compounds, whose properties and applications remain open to detailed studies. Herein, we introduce the rational design of a new ligand precursor, L1, suitable for the synthesis of six triply interlocked [2]catenanes by coordination-driven self-assembly. The interlocked compounds can be reversibly converted into the corresponding simple triangular prism metallacage by addition of H2O or DMF solvents to their CH3OH solutions, thereby demonstrating the importance of π···π stacking and hydrogen bonding interactions in the formation of triply interlocked [2]catenanes. Moreover, extensive studies have been conducted to assess the remarkable photothermal conversion performance. Complex 6a, exhibiting outstanding photothermal conversion performance (conversion efficiency in solution : 31.82%), is used to prepare novel photoresponsive elastomer in combination with thermally activated liquid crystal elastomer. The resultant material displays robust response to near-infrared (NIR) laser and the capability of completely reforming the shape and reversible actuation, paving the way for the application of half-sandwich organometallic units in photo-responsive smart materials.

3.
J Am Chem Soc ; 145(32): 18036-18047, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37459092

RESUMO

A variety of organometallic supramolecular architectures have been constructed over the past decades and their properties were also explored via different strategies. However, the synthesis of metalla-Russian doll is still a fascinating challenge. Herein, a series of new coordination supramolecular complexes, including a metalla-Russian doll, metalla[2]catenanes, and metallarectangles, were synthesized by using meticulously selected Cp*Rh (Cp* = η5-C5Me5) building units (E1, E2, and E3) and three rigid anthracylpyridine ligands (L1, L2, and L3) via a self-assembly strategy. While the combination of the short ligand L1 and E1 or E2 generated two metallarectangles, the longer ligand L2 containing an alkynyl group resulted in two new [2]catenanes, most likely due to which the strong electron-donating effect of alkynyl groups causes self-accumulation. Interestingly, an unusual Russian doll assembly was obtained through the reaction of L3 and E3 based on sextuple π···π stacking interactions. Furthermore, the dynamic structural conversion between [2]catenanes and the corresponding metallarectangles could be observed through concentration-, solvent-, and guest-induced effects. The [2]catenane complexes 4b displayed efficient photothermal conversion efficiency in solution (20.2%), in comparison with other organometallic macrocycles. We believe that π···π stacking interactions generate active nonradiative pathways and promote radiative photodeactivation pathways. This study proves the versatility of half-sandwich building units, not only to build complicated supramolecular topologies but also in effective functional materials for various appealing applications.

4.
Molecules ; 28(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836669

RESUMO

Due to their fascinating topological structures and application prospects, coordination supramolecular complexes have continuously been studied by scientists. However, the controlled construction and property study of organometallic handcuffs remains a significant and challenging research subject in the area of supramolecular chemistry. Hence, a series of tetranuclear organometallic and heterometallic handcuffs bearing different size and metal types were rationally designed and successfully synthesized by utilizing a quadridentate pyridyl ligand (tetra-(3-pyridylphenyl)ethylene) based on three Cp*Rh (Cp* = η5-C5Me5) fragments bearing specific longitudinal dimensions and conjugated planes. These results were determined with single-crystal X-ray diffraction analysis technology, ESI-MS NMR spectroscopy, etc. Importantly, the photoquenching effect of Cp* groups and the discrepancy of intermolecular π-π stacking interactions between building block and half-sandwich fragments promote markedly different photothermal conversion results. These results will further push the synthesis of topological structures and the development of photothermal conversion materials.

5.
Angew Chem Int Ed Engl ; 62(20): e202301516, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929534

RESUMO

Intricately interwoven topologies are continually being synthesized and are ultimately equally versatile and significant at the nanoscale level; however, reports concerning ravel structures, which are highly entwined new topological species, are extremely rare and fraught with tremendous synthesis challenges. To solve the synthesis problem, a tetrapodontic pyridine ligand L1 with two types of olefinic bond units and two Cp*M-based building blocks (E1, M=Rh; E2, M=Ir) featuring large conjugated planes was prepared to perform the self-assembly. Two unprecedented [5+10] icosanuclear molecular 4-ravels containing four crossings were obtained by parallel-displaced π⋅⋅⋅π interactions in a single-step strategy. Remarkably, reversible structural transformations between the 4-ravel and the corresponding metallocage could be realized by concentration changes and solvent- and guest-induced effects. X-ray crystallographic data and NMR spectroscopy provide full confirmation of these phenomena.

6.
Molecules ; 27(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744878

RESUMO

The controlled synthesis of organometallic supramolecular macrocycles cages remains interesting and challenging work in the field of supramolecular chemistry. Here, two tetranuclear rectangular macrocycles and an octuclear cage were designed and synthesized utilizing a rigid and functionalized pillar linker, 2,6-bis(pyridin-4-yl)-1,7-dihydrobenzo [1,2-d:4,5-d']diimidazole (BBI4PY) based on three half-sandwich rhodium building blocks bearing different sizes. X-ray crystallography in combination with 1H NMR spectroscopy elucidated that the two building blocks with shorter spacers only result in rectangular macrocycles. However, the building block of bulkier size to avoid the π-π stacking interactions between two ligands BBI4PY led to the formation of an octuclear cage complex. The latter cage contains two types of metal ions, namely Rh3+ and Cu2+, showing significant characteristics of heterogeneous metal-assembling compounds. In addition, the cage accommodates two free isopropyl ether solvent molecules, thus displaying host-guest behavior.

7.
Molecules ; 27(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335290

RESUMO

Herein, a new Zn-MOF material, [Zn(L1)(L2)], 1, was built successfully through a one-pot solvothermal method. The 3D MOF structure was determined by Single X-ray diffraction analysis, IR, and elemental analysis. A series of PXRD tests of 1 after being immersed in different solvents and pH solutions demonstrated the good stability of 1. Interestingly, this material displayed high catalytic activity for the visible-light-driven hydrogen generation under the illumination of white LED in pure water or a mixture of DMF and H2O without additional photosensitizers and cocatalysts. Besides, the studies also showed that the catalytic activity changed constantly as well as the solvent ratio adjustment of DMF and H2O from 4:6 to 2:8. Additionally, the catalytic activity reached the best value (743 µmol g-1 h-1) when the solvent ratio was 4:6. The heterogeneous nature and recyclability of the MOF catalyst, as well as several factors that affect the catalytic activity, were investigated and described in detail. Moreover, the photocatalytic mechanism for the hydrogen generation of 1 was also proposed based on the fluorescence spectra and UV-vis absorption.

8.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296465

RESUMO

A new metal-organic framework (MOF), [Co2(L)2(azpy)]n (compound 1, H2L = 5-(pyridin-4-ylmethoxy)-isophthalic acid, azpy = 4,4'-azopyridine), was synthesized by a solvothermal method and further characterized by elemental analysis, IR spectra, thermogravimetric analysis, single-crystal and powder X-ray diffraction. The X-ray single-crystal diffraction analysis for compound 1 indicated that two cis L22- ligands connected to two cobalt atoms resulted in a macrocycle structure. Through a series of adsorption tests, we found that compound 1 exhibited a high capacity of CO2, and the adsorption capacity could reach 30.04 cm3/g. More interestingly, under 273 K conditions, the adsorption of CO2 was 41.33 cm3/g. In addition, when the Co-MOF was irradiated by a 730 nm laser, rapid temperature increases for compound 1 were observed (temperature variation in 169 s: 26.6 °C), showing an obvious photothermal conversion performance. The photothermal conversion efficiency reached 20.3%, which might be due to the fact that the parallel arrangement of azo units inhibited non-radiative transition and promoted photothermal conversion. The study provides an efficient strategy for designing MOFs for the adsorption of CO2 and with good photothermal conversion performance.

9.
J Am Chem Soc ; 142(44): 18946-18954, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33006897

RESUMO

Molecular figure-eight knot (notation: 41) is extremely rare and presents great synthetic challenge due to its essentially complicated entanglement. To solve this synthetic problem, a quadruple stacking strategy was developed. Herein, we report the efficient self-assembly of figure-eight knots induced by quadruple stacking interactions, through the combination of four carefully selected naphthalenediimide (NDI)-based pyridyl ligands and Cp*Rh building blocks bearing large conjugated planes in a single-step strategy. Notably, slight size adjustment of the Cp*Rh units was found to affect the stability of the figure-eight knots in methanol. Additionally, reversible structural transformations between these figure-eight knots and corresponding metallorectangles could be achieved by concentration changes and solvent- and guest-induced effects. X-ray crystallographic data and NMR spectroscopy provide full confirmation of these phenomena.

10.
Chem Sci ; 13(18): 5130-5140, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655550

RESUMO

Although the selective synthesis of complicated supramolecular architectures has seen significant progress in recent years, the exploration of the properties of these complexes remains a fascinating challenge. Herein, a series of new supramolecular topologies, metalla[2]catenanes and Borromean ring assemblies, were constructed based on appropriate Cp*Rh building blocks and two rigid alkynyl pyridine ligands (L1, L2) via coordination-driven self-assembly. Interestingly, minor differences between the two rigid alkynyl pyridine ligands with/without organic substituents led to products with dramatically different topologies. Careful structural analysis showed that π-π stacking interactions play a crucial role in stabilizing these [2]catenanes and Borromean ring assemblies, while also promoting nonradiative transitions and triggering photothermal conversion in both the solution and the solid states. These results were showcased through comparative studies of the NIR photothermal conversion efficiencies of the Borromean ring assemblies, [2]catenanes and metallarectangles, which exhibited a wide range of photothermal conversion efficiencies (12.64-72.21%). The influence of the different Cp*Rh building blocks on the NIR photothermal conversion efficiencies of their assemblies was investigated. Good photothermal conversion properties of the assemblies were also found in the solid state. This study provides a new strategy to construct valuable half-sandwich-based NIR photothermal conversion materials while also providing promising candidates for the further development of materials science.

11.
Dalton Trans ; 50(46): 16984-16989, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34612256

RESUMO

Two novel compounds, a molecular trefoil knot and a Solomon link, were constructed successfully through the cooperation of multiple π-π stacking interactions. A reversible transformation between the trefoil knot and the corresponding [2 + 2] macrocycle could be achieved by solvent- and guest-induced effects. However, the Solomon link maintains its stability in different concentrations, solvents and guest molecules. Single-crystal X-ray crystallographic data, NMR spectroscopic experiments and ESI-MS support the synthesis and structural assignments. These synthesis methods open the door to the further development of smart materials, which will push the advancement of rational design of biomaterials.


Assuntos
Compostos Macrocíclicos/síntese química , Cristalografia por Raios X , Compostos Macrocíclicos/química , Modelos Moleculares , Estrutura Molecular , Solventes/química
12.
Chem Sci ; 11(30): 8013-8019, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34094170

RESUMO

The synthesis of complicated supramolecular architectures and the study of their reversible structural transformations remains a fascinating challenge in the field of supramolecular chemistry. Herein, two types of novel coordination compounds, a non-intertwined ring-in-ring assembly and an abnormal trefoil knot were constructed from a strategically selected Cp*Rh building block and a semi-rigid N,N'-bis(4-pyridylmethyl)diphthalic diimide ligand via coordination-driven self-assembly. Remarkably, the reversible transformation between the abnormal trefoil knot and the ring-in-ring assembly or the corresponding tetranuclear macrocycle could be achieved by the synergistic effects of Ag+ ion coordination and alteration of the solvent. Single-crystal X-ray crystallographic data and NMR spectroscopic experiments support the structural assignments.

13.
Chem Commun (Camb) ; 56(62): 8758-8761, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32618296

RESUMO

In this study, two new monometallic organic frameworks (MOFs), namely {[Zn1.5L(NMP)(H2O)]·H2O}n (1) and {[Pb2L2(H2O)2]·H2O}n (2), were synthesized for the first time by a new bifunctional N,O-containing 2-(1H-tetrazol-5-yl)terephthalic acid (H2L) ligand. Then, based on the HSAB principle, another porous Pb-Zn heterometallic organic framework (HMOF), namely {[PbZn0.5L(H2O)]·0.5NMP·H2O}n (3), was successfully obtained for the first time by combining Pb(ii) and Zn(ii) ions with H2L. The MOFs 1 and 2 are 3D densely packed frameworks, whereas the HMOF 3 is a porous 3D framework (28.9% porosity) with 1D open channels modified by Lewis basic sites (exposed N atoms) and Lewis acidic sites (unsaturated bimetallic sites). The HMOF 3 has a strong boiling water/acid-base resistance (pH = 2-12) and shows an enhanced high-efficiency catalytic effect for CO2 conversion (98%) under ambient temperature and pressure conditions. In addition, fine color regulations of the MOFs were successfully realized by doping different kinds of metal ions into them. This study aims to provide a new way and field of vision for the construction of HMOFs and their multi-functional materials.

14.
Nat Commun ; 10(1): 2057, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053709

RESUMO

Over the past decades, molecular knots and links have captivated the chemical community due to their promising mimicry properties in molecular machines and biomolecules and are being realized with increasing frequency with small molecules. Herein, we describe how to utilize stacking interactions and hydrogen-bonding patterns to form trefoil knots, figure-eight knots and [2]catenanes. A transformation can occur between the unique trefoil knot and its isomeric boat-shaped tetranuclear macrocycle by the complementary concentration effect. Remarkably, the realization and authentication of the molecular figure-eight knot with four crossings fills the blank about 41 knot in knot tables. The [2]catenane topology is obtained because the selective naphthalenediimide (NDI)-based ligand, which can engender favorable aromatic donor-acceptor π interactions due to its planar, electron-deficient aromatic surface. The stacking interactions and hydrogen-bond interactions play important roles in these self-assembly processes. The advantages provide an avenue for the generation of structurally and topologically complex supramolecular architectures.

15.
Dalton Trans ; 47(18): 6378-6385, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29687128

RESUMO

A series of hexanuclear rectangular macrocycles were designed and synthesized by utilizing multifunctional pyrazine-derived (pyrazine-2,3-diamine (H4L1)) and quinoxaline-derived ligands (2,3-dihydroxy-quinoxaline (H2L2)) featuring two monodentate sites and one pair of chelating sites. X-ray crystallography in combination with 1H NMR spectroscopy elucidated that both half-sandwich iridium diimine and dihydroxy moieties are located on either side of the rectangular macrocycles, making them centrosymmetric. Thereby, the prepared diimine-functionalised complexes were found to have unsaturated metal sites on account of their strongly bound Ir-N-C-C-N arrangement. However, all the iridium atoms in the rectangular macrocycles containing dihydroxy groups were found to adopt an 18-electron coordination configuration, indicating that the O,O'-bonded iridium centers had bound additional ligands, such as Cl-, MeOH, MeCN, etc. Notably, a rare rectangular macrocycle containing a single coordinatively unsaturated metal site was achieved when the ligands H2L12- and L22- were introduced simultaneously.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa