Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Mol Cell Cardiol ; 189: 83-89, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484473

RESUMO

Diabetic heart disease morbidity and mortality is escalating. No specific therapeutics exist and mechanistic understanding of diabetic cardiomyopathy etiology is lacking. While lipid accumulation is a recognized cardiomyocyte phenotype of diabetes, less is known about glycolytic fuel handling and storage. Based on in vitro studies, we postulated the operation of an autophagy pathway in the myocardium specific for glycogen homeostasis - glycophagy. Here we visualize occurrence of cardiac glycophagy and show that the diabetic myocardium is characterized by marked glycogen elevation and altered cardiomyocyte glycogen localization. We establish that cardiac glycophagy flux is disturbed in diabetes. Glycophagy may represent a potential therapeutic target for alleviating the myocardial impacts of metabolic disruption in diabetic heart disease.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/tratamento farmacológico , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Glicogênio/metabolismo , Autofagia , Diabetes Mellitus/metabolismo
2.
Am J Physiol Cell Physiol ; 325(5): C1158-C1177, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642240

RESUMO

Circadian rhythms are endogenous oscillations with approximately a 24-h period that allow organisms to anticipate the change between day and night. Disruptions that desynchronize or misalign circadian rhythms are associated with an increased risk of cardiometabolic disease. This review focuses on the liver circadian clock as relevant to the risk of developing metabolic diseases including nonalcoholic fatty liver disease (NAFLD), insulin resistance, and type 2 diabetes (T2D). Many liver functions exhibit rhythmicity. Approximately 40% of the hepatic transcriptome exhibits 24-h rhythms, along with rhythms in protein levels, posttranslational modification, and various metabolites. The liver circadian clock is critical for maintaining glucose and lipid homeostasis. Most of the attention in the metabolic field has been directed toward diet, exercise, and rather little to modifiable risks due to circadian misalignment or disruption. Therefore, the aim of this review is to systematically analyze the various approaches that study liver circadian pathways, targeting metabolic liver diseases, such as diabetes, nonalcoholic fatty liver disease, using human, rodent, and cell biology models.NEW & NOTEWORTHY Over the past decade, there has been an increased interest in understanding the intricate relationship between circadian rhythm and liver metabolism. In this review, we have systematically searched the literature to analyze the various experimental approaches utilizing human, rodent, and in vitro cellular approaches to dissect the link between liver circadian rhythms and metabolic disease.


Assuntos
Relógios Circadianos , Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Ritmo Circadiano/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Roedores
3.
J Biol Chem ; 298(7): 102093, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654138

RESUMO

Autophagy is an essential cellular process involving degradation of superfluous or defective macromolecules and organelles as a form of homeostatic recycling. Initially proposed to be a "bulk" degradation pathway, a more nuanced appreciation of selective autophagy pathways has developed in the literature in recent years. As a glycogen-selective autophagy process, "glycophagy" is emerging as a key metabolic route of transport and delivery of glycolytic fuel substrate. Study of glycophagy is at an early stage. Enhanced understanding of this major noncanonical pathway of glycogen flux will provide important opportunities for new insights into cellular energy metabolism. In addition, glycogen metabolic mishandling is centrally involved in the pathophysiology of several metabolic diseases in a wide range of tissues, including the liver, skeletal muscle, cardiac muscle, and brain. Thus, advances in this exciting new field are of broad multidisciplinary interest relevant to many cell types and metabolic states. Here, we review the current evidence of glycophagy involvement in homeostatic cellular metabolic processes and of molecular mediators participating in glycophagy flux. We integrate information from a variety of settings including cell lines, primary cell culture systems, ex vivo tissue preparations, genetic disease models, and clinical glycogen disease states.


Assuntos
Autofagia , Glicogênio , Glicogenólise , Autofagia/fisiologia , Glicogênio/metabolismo , Macroautofagia
4.
Cardiovasc Diabetol ; 17(1): 89, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29903013

RESUMO

BACKGROUND: Calcium/calmodulin-dependent kinase II-delta (CaMKIIδ) activity is enhanced during hyperglycemia and has been shown to alter intracellular calcium handling in cardiomyocytes, ultimately leading to reduced cardiac performance. However, the effects of CaMKIIδ on cardiac contractility during type 2 diabetes are undefined. METHODS: We examined the expression and activation of CaMKIIδ in right atrial appendages from non-diabetic and type 2 diabetic patients (n = 7 patients per group) with preserved ejection fraction, and also in right ventricular tissue from Zucker Diabetic Fatty rats (ZDF) (n = 5-10 animals per group) during early diabetic cardiac dysfunction, using immunoblot. We also measured whole heart function of ZDF and control rats using echocardiography. Then we measured contraction and relaxation parameters of isolated trabeculae from ZDF to control rats in the presence and absence of CaMKII inhibitors. RESULTS: CaMKIIδ phosphorylation (at Thr287) was increased in both the diabetic human and animal tissue, indicating increased CaMKIIδ activation in the type 2 diabetic heart. Basal cardiac contractility and relaxation were impaired in the cardiac muscles from the diabetic rats, and CaMKII inhibition with KN93 partially restored contractility and relaxation. Autocamtide-2-related-inhibitor peptide (AIP), another CaMKII inhibitor that acts via a different mechanism than KN93, fully restored cardiac contractility and relaxation. CONCLUSIONS: Our results indicate that CaMKIIδ plays a key role in modulating performance of the diabetic heart, and moreover, suggest a potential therapeutic role for CaMKII inhibitors in improving myocardial function during type 2 diabetes.


Assuntos
Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Contração Miocárdica/efeitos dos fármacos , Miocárdio/enzimologia , Peptídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Idoso , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Ratos Zucker
5.
bioRxiv ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39211188

RESUMO

Glycogen-autophagy ('glycophagy') is a selective autophagy process involved in delivering glycogen to the lysosome for bulk degradation. Glycophagy protein intermediaries include STBD1 as a glycogen tagging receptor, delivering the glycogen cargo into the forming phagosome by partnering with the Atg8 homolog, GABARAPL1. Glycophagy is emerging as a key process of energy metabolism and development of reliable tools for assessment of glycophagy activity is an important priority. Here we show that antibodies raised against the N-terminus of the GABARAPL1 protein (but not the full-length protein) detected a specific endogenous GABARAPL1 immunoblot band at 18kDa. A stable GFP-GABARAPL1 cardiac cell line was used to quantify GABARAPL1 lysosomal flux via measurement of GFP puncta in response to lysosomal inhibition with bafilomycin. Endogenous glycophagy flux was quantified in primary rat ventricular myocytes by the extent of glycogen accumulation with bafilomycin combined with chloroquine treatment (no effect observed with bafilomycin or chloroquine alone). In wild-type isolated mouse hearts, bafilomycin alone and bafilomycin combined with chloroquine (but not chloroquine alone) elicited a significant increase in glycogen content signifying basal glycophagy flux. Collectively, these methodologies provide a comprehensive toolbox for tracking cardiac glycophagy activity to advance research into the role of glycophagy in health and disease.

6.
Physiol Rep ; 10(20): e15463, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301719

RESUMO

Pathological accumulation of intrahepatic triglyceride underpins the early stages of nonalcoholic fatty liver disease (NAFLD) and can progress to fibrosis, cirrhosis, and cancer of the liver. Studies in humans suggest that consumption of a diet enriched in saturated compared to unsaturated fatty acids (FAs), is more detrimental to liver fat accumulation and metabolism. However, the reasons for the divergence remain unclear and physiologically-relevant cellular models are required. Therefore, the aims of this study were to investigate the effect of modifying media composition, concentration, and treatment frequency of sugars, FAs and insulin on intrahepatocellular triglyceride content and intracellular glucose, FA and circadian function. Huh7 cells were treated with 2% human serum and a combination of sugars and FAs (low fat low sugar [LFLS], high fat low sugar [HFLS], or high fat high sugar [HFHS]) enriched in either unsaturated (OPLA) or saturated (POLA) FAs for 2, 4, or 7 days with a daily or alternating treatment regime. Stable isotope tracers were utilized to investigate basal and/or insulin-responsive changes in hepatocyte metabolism in response to different treatment regimes. Cell viability, media biochemistry, intracellular metabolism, and circadian biology were quantified. The FA composition of the media (OPLA vs. POLA) did not influence cell viability or intracellular triglyceride content in hepatocytes. In contrast, POLA-treated cells had lower FA oxidation and media acetate, and with higher FA concentrations, displayed lower intracellular glycogen content and diminished insulin stimulation of glycogenesis, compared to OPLA-treated cells. The addition of HFHS also had profound effects on circadian oscillation and gene expression. Cells treated daily with HFHS for at least 4 days resulted in a cellular model displaying characteristics of early stage NAFLD seen in humans. Repeated treatment for longer durations (≥7 days) may provide opportunities to investigate lipid and glucose metabolism in more severe stages of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Triglicerídeos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ácidos Graxos/metabolismo
7.
Nutr Diabetes ; 11(1): 8, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558456

RESUMO

Diabetes is associated with cardiac metabolic disturbances and increased heart failure risk. Plasma fructose levels are elevated in diabetic patients. A direct role for fructose involvement in diabetic heart pathology has not been investigated. The goals of this study were to clinically evaluate links between myocardial fructose and sorbitol (a polyol pathway fructose precursor) levels with evidence of cardiac dysfunction, and to experimentally assess the cardiomyocyte mechanisms involved in mediating the metabolic effects of elevated fructose. Fructose and sorbitol levels were increased in right atrial appendage tissues of type 2 diabetic patients (2.8- and 1.5-fold increase respectively). Elevated cardiac fructose levels were confirmed in type 2 diabetic rats. Diastolic dysfunction (increased E/e', echocardiography) was significantly correlated with cardiac sorbitol levels. Elevated myocardial mRNA expression of the fructose-specific transporter, Glut5 (43% increase), and the key fructose-metabolizing enzyme, Fructokinase-A (50% increase) was observed in type 2 diabetic rats (Zucker diabetic fatty rat). In neonatal rat ventricular myocytes, fructose increased glycolytic capacity and cytosolic lipid inclusions (28% increase in lipid droplets/cell). This study provides the first evidence that elevated myocardial fructose and sorbitol are associated with diastolic dysfunction in diabetic patients. Experimental evidence suggests that fructose promotes the formation of cardiomyocyte cytosolic lipid inclusions, and may contribute to lipotoxicity in the diabetic heart.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Frutose/análise , Metabolismo dos Lipídeos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Sorbitol/análise , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Frutoquinases , Frutose/metabolismo , Glucose/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Masculino , Miocárdio/química , Ratos , Ratos Zucker , Sorbitol/metabolismo , Disfunção Ventricular Esquerda/patologia
9.
Sci Rep ; 10(1): 13651, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788622

RESUMO

Type 2 diabetes is a prominent risk factor for peripheral artery disease (PAD). Yet, the mechanistic link between diabetes and PAD remains unclear. This study proposes that dysregulation of the endogenous hormone ghrelin, a potent modulator of vascular function, underpins the causal link between diabetes and PAD. Moreover, this study aimed to demonstrate the therapeutic potential of exogenous ghrelin in a diabetic mouse model of PAD. Standard ELISA analysis was used to quantify and compare circulating levels of ghrelin between (i) human diabetic patients with or without PAD (clinic) and (ii) db/db diabetic and non-diabetic mice (lab). Db/db mice underwent unilateral hindlimb ischaemia (HLI) for 14 days and treated with or without exogenous ghrelin (150 µg/kg/day.) Subsequently vascular reparation, angiogenesis, hindlimb perfusion, structure and function were assessed using laser Doppler imaging, micro-CT, microangiography, and protein and micro-RNA (miRNA) analysis. We further examined hindlimb perfusion recovery of ghrelin KO mice to determine whether an impaired vascular response to HLI is linked to ghrelin dysregulation in diabetes. Patients with PAD, with or without diabetes, had significantly lower circulating levels of endogenous ghrelin, compared to healthy individuals. Diabetic db/db mice had ghrelin levels that were only 7% of non-diabetic mice. The vascular reparative capacity of diabetic db/db mice in response to HLI was impaired compared to non-diabetic mice and, importantly, comparable to ghrelin KO mice. Daily therapeutic treatment of db/db mice with ghrelin for 14 days post HLI, stimulated angiogenesis, and improved skeletal muscle architecture and cell survival, which was associated with an increase in pro-angiogenic miRNAs-126 and -132. These findings unmask an important role for endogenous ghrelin in vascular repair following limb ischemia, which appears to be downregulated in diabetic patients. Moreover, these results implicate exogenous ghrelin as a potential novel therapy to enhance perfusion in patients with lower limb PAD, especially in diabetics.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Grelina/metabolismo , Membro Posterior/patologia , Isquemia/complicações , Neovascularização Patológica/patologia , Doença Arterial Periférica/patologia , Idoso , Animais , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Camundongos , MicroRNAs/genética , Pessoa de Meia-Idade , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Doença Arterial Periférica/complicações , Doença Arterial Periférica/metabolismo
10.
Antioxid Redox Signal ; 31(6): 472-486, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30417655

RESUMO

Significance: Energy stress in the myocardium occurs in a variety of acute and chronic pathophysiological contexts, including ischemia, nutrient deprivation, and diabetic disease settings of substrate disturbance. Although the heart is highly adaptive and flexible in relation to fuel utilization and routes of adenosine-5'-triphosphate (ATP) generation, maladaptations in energy stress situations confer functional deficit. An understanding of the mechanisms that link energy stress to impaired myocardial performance is crucial. Recent Advances: Emerging evidence suggests that, in parallel with regulated enzymatic pathways that control intracellular substrate supply, other processes of "bulk" autophagic macromolecular breakdown may be important in energy stress conditions. Recent findings indicate that cargo-specific autophagic activity may be important in different stress states. In particular, induction of glycophagy, a glycogen-specific autophagy, has been described in acute and chronic energy stress situations. The impact of elevated cardiomyocyte glucose flux relating to glycophagy dysregulation on contractile function is unknown. Critical Issues: Ischemia- and diabetes-related cardiac adverse events comprise the majority of cardiovascular disease morbidity and mortality. Current therapies involve management of systemic comorbidities. Cardiac-specific adjunct treatments targeted to manage myocardial energy stress responses are lacking. Future Directions: New knowledge is required to understand the mechanisms involved in selective recruitment of autophagic responses in the cardiomyocyte energy stress response. In particular, exploration of the links between cell substrate flux, calcium ion (Ca2+) flux, and phagosomal cargo flux is required. Strategies to target specific fuel "bulk" management defects in cardiac energy stress states may be of therapeutic value.


Assuntos
Autofagia , Metabolismo Energético , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Fisiológico , Animais , Humanos
11.
Aging Cell ; 17(2)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29517834

RESUMO

In this study, results are reported from the analyses of vastus lateralis muscle biopsy samples obtained from a subset (n = 90) of 125 previously phenotyped, highly active male and female cyclists aged 55-79 years in regard to age. We then subsequently attempted to uncover associations between the findings in muscle and in vivo physiological functions. Muscle fibre type and composition (ATPase histochemistry), size (morphometry), capillary density (immunohistochemistry) and mitochondrial protein content (Western blot) in relation to age were determined in the biopsy specimens. Aside from an age-related change in capillary density in males (r = -.299; p = .02), no other parameter measured in the muscle samples showed an association with age. However, in males type I fibres and capillarity (p < .05) were significantly associated with training volume, maximal oxygen uptake, oxygen uptake kinetics and ventilatory threshold. In females, the only association observed was between capillarity and training volume (p < .05). In males, both type II fibre proportion and area (p < .05) were associated with peak power during sprint cycling and with maximal rate of torque development during a maximal voluntary isometric contraction. Mitochondrial protein content was not associated with any cardiorespiratory parameter in either males or females (p > .05). We conclude in this highly active cohort, selected to mitigate most of the effects of inactivity, that there is little evidence of age-related changes in the properties of VL muscle across the age range studied. By contrast, some of these muscle characteristics were correlated with in vivo physiological indices.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/fisiopatologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Exercício Físico/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa