Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(16): e2212664120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040409

RESUMO

Many bacteria possess dynamic filaments called Type IV pili (T4P) that perform diverse functions in colonization and dissemination, including host cell adhesion, DNA uptake, and secretion of protein substrates-exoproteins-from the periplasm to the extracellular space. The Vibrio cholerae toxin-coregulated pilus (TCP) and the enterotoxigenic Escherichia coli CFA/III pilus each mediates export of a single exoprotein, TcpF and CofJ, respectively. Here, we show that the disordered N-terminal segment of mature TcpF is the export signal (ES) recognized by TCP. Deletion of the ES disrupts secretion and causes TcpF to accumulate in the V. cholerae periplasm. The ES alone can mediate export of Neisseria gonorrhoeae FbpA by V. cholerae in a T4P-dependent manner. The ES is specific for its autologous T4P machinery as CofJ bearing the TcpF ES is exported by V. cholerae, whereas TcpF bearing the CofJ ES is not. Specificity is mediated by binding of the ES to TcpB, a minor pilin that primes pilus assembly and forms a trimer at the pilus tip. Finally, the ES is proteolyzed from the mature TcpF protein upon secretion. Together, these results provide a mechanism for delivery of TcpF across the outer membrane and release into the extracellular space.


Assuntos
Fímbrias Bacterianas , Vibrio cholerae , Fímbrias Bacterianas/metabolismo , Proteínas de Fímbrias/metabolismo , Vibrio cholerae/genética
2.
Reproduction ; 168(5)2024 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-39082954

RESUMO

In Brief: This point of view article focuses on the potential contribution of defects in protein synthesis (translation) to the incidence of oocyte meiotic failure. We discuss the potential cause of diminished oocyte translation during aging and the impact of these deficits on the function of the meiotic spindle. Abstract: Errors during female meiosis lead to embryonic aneuploidy and miscarriage and occur with increasing frequency during aging. The underlying molecular changes that drive female meiotic instability remain a subject of debate. Developing oocytes undergo a tremendous increase in cytoplasmic volume over several months of follicle development and rely on long-lived mRNAs and ribosomes accumulated during this growth phase for subsequent meiotic maturation. In this point of view article, we discuss how the unique reliance on stores of long-lived mRNAs and ribosomes may represent an Achilles' heel for oocyte function and how alterations that reduce the translational capacity of oocytes could be a factor significantly contributing to female infertility. Understanding these mechanisms could lead to new therapeutic strategies to improve fertility outcomes.


Assuntos
Envelhecimento , Meiose , Oócitos , Oócitos/fisiologia , Oócitos/citologia , Humanos , Feminino , Animais , Envelhecimento/fisiologia , Biossíntese de Proteínas , Reprodução/fisiologia , Infertilidade Feminina/patologia , Infertilidade Feminina/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa