Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Brain Mapp ; 40(2): 638-651, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30368979

RESUMO

Previous positron emission tomography (PET) studies have quantified filamentous tau pathology using regions-of-interest (ROIs) based on observations of the topographical distribution of neurofibrillary tangles in post-mortem tissue. However, such approaches may not take full advantage of information contained in neuroimaging data. The present study employs an unsupervised data-driven method to identify spatial patterns of tau-PET distribution, and to compare these patterns to previously published "pathology-driven" ROIs. Tau-PET patterns were identified from a discovery sample comprised of 123 normal controls and patients with mild cognitive impairment or Alzheimer's disease (AD) dementia from the Swedish BioFINDER cohort, who underwent [18 F]AV1451 PET scanning. Associations with cognition were tested in a separate sample of 90 individuals from ADNI. BioFINDER [18 F]AV1451 images were entered into a robust voxelwise stable clustering algorithm, which resulted in five clusters. Mean [18 F]AV1451 uptake in the data-driven clusters, and in 35 previously published pathology-driven ROIs, was extracted from ADNI [18 F]AV1451 scans. We performed linear models comparing [18 F]AV1451 signal across all 40 ROIs to tests of global cognition and episodic memory, adjusting for age, sex, and education. Two data-driven ROIs consistently demonstrated the strongest or near-strongest effect sizes across all cognitive tests. Inputting all regions plus demographics into a feature selection routine resulted in selection of two ROIs (one data-driven, one pathology-driven) and education, which together explained 28% of the variance of a global cognitive composite score. Our findings suggest that [18 F]AV1451-PET data naturally clusters into spatial patterns that are biologically meaningful and that may offer advantages as clinical tools.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Neuroimagem/métodos , Reconhecimento Automatizado de Padrão/métodos , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Carbolinas , Análise por Conglomerados , Estudos de Coortes , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino
2.
Neuroimage ; 147: 532-541, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28011254

RESUMO

Resting-state functional connectivity (RSFC) studies have provided strong evidences that visual deprivation influences the brain's functional architecture. In particular, reduced RSFC coupling between occipital (visual) and temporal (auditory) regions has been reliably observed in early blind individuals (EB) at rest. In contrast, task-dependent activation studies have repeatedly demonstrated enhanced co-activation and connectivity of occipital and temporal regions during auditory processing in EB. To investigate this apparent discrepancy, the functional coupling between temporal and occipital networks at rest was directly compared to that of an auditory task in both EB and sighted controls (SC). Functional brain clusters shared across groups and cognitive states (rest and auditory task) were defined. In EBs, we observed higher occipito-temporal correlations in activity during the task than at rest. The reverse pattern was observed in SC. We also observed higher temporal variability of occipito-temporal RSFC in EB suggesting that occipital regions in this population may play the role of a multiple demand system. Our study reveals how the connectivity profile of sighted and early blind people is differentially influenced by their cognitive state, bridging the gap between previous task-dependent and RSFC studies. Our results also highlight how inferring group-differences in functional brain architecture solely based on resting-state acquisition has to be considered with caution.


Assuntos
Córtex Auditivo/fisiopatologia , Percepção Auditiva/fisiologia , Cegueira/fisiopatologia , Conectoma/métodos , Córtex Visual/fisiopatologia , Adulto , Córtex Auditivo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Descanso , Córtex Visual/diagnóstico por imagem , Adulto Jovem
3.
Neuroimage ; 149: 220-232, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28161310

RESUMO

Connectivity studies using resting-state functional magnetic resonance imaging are increasingly pooling data acquired at multiple sites. While this may allow investigators to speed up recruitment or increase sample size, multisite studies also potentially introduce systematic biases in connectivity measures across sites. In this work, we measure the inter-site effect in connectivity and its impact on our ability to detect individual and group differences. Our study was based on real, as opposed to simulated, multisite fMRI datasets collected in N=345 young, healthy subjects across 8 scanning sites with 3T scanners and heterogeneous scanning protocols, drawn from the 1000 functional connectome project. We first empirically show that typical functional networks were reliably found at the group level in all sites, and that the amplitude of the inter-site effects was small to moderate, with a Cohen's effect size below 0.5 on average across brain connections. We then implemented a series of Monte-Carlo simulations, based on real data, to evaluate the impact of the multisite effects on detection power in statistical tests comparing two groups (with and without the effect) using a general linear model, as well as on the prediction of group labels with a support-vector machine. As a reference, we also implemented the same simulations with fMRI data collected at a single site using an identical sample size. Simulations revealed that using data from heterogeneous sites only slightly decreased our ability to detect changes compared to a monosite study with the GLM, and had a greater impact on prediction accuracy. However, the deleterious effect of multisite data pooling tended to decrease as the total sample size increased, to a point where differences between monosite and multisite simulations were small with N=120 subjects. Taken together, our results support the feasibility of multisite studies in rs-fMRI provided the sample size is large enough.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Método de Monte Carlo , Estudos Multicêntricos como Assunto , Descanso , Máquina de Vetores de Suporte , Adulto Jovem
4.
Neuroimage ; 123: 212-28, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26241681

RESUMO

A recent trend in functional magnetic resonance imaging is to test for association of clinical disorders with every possible connection between selected brain parcels. We investigated the impact of the resolution of functional brain parcels, ranging from large-scale networks to local regions, on a mass univariate general linear model (GLM) of connectomes. For each resolution taken independently, the Benjamini-Hochberg procedure controlled the false-discovery rate (FDR) at nominal level on realistic simulations. However, the FDR for tests pooled across all resolutions could be inflated compared to the FDR within resolution. This inflation was severe in the presence of no or weak effects, but became negligible for strong effects. We thus developed an omnibus test to establish the overall presence of true discoveries across all resolutions. Although not a guarantee to control the FDR across resolutions, the omnibus test may be used for descriptive analysis of the impact of resolution on a GLM analysis, in complement to a primary analysis at a predefined single resolution. On three real datasets with significant omnibus test (schizophrenia, congenital blindness, motor practice), markedly higher rate of discovery were obtained at low resolutions, below 50, in line with simulations showing increase in sensitivity at such resolutions. This increase in discovery rate came at the cost of a lower ability to localize effects, as low resolution parcels merged many different brain regions together. However, with 30 or more parcels, the statistical effect maps were biologically plausible and very consistent across resolutions. These results show that resolution is a key parameter for GLM-connectome analysis with FDR control, and that a functional brain parcellation with 30 to 50 parcels may lead to an accurate summary of full connectome effects with good sensitivity in many situations.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Adolescente , Adulto , Idoso , Algoritmos , Cegueira/congênito , Cegueira/fisiopatologia , Encéfalo/fisiopatologia , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Processamento de Imagem Assistida por Computador , Aprendizagem/fisiologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Reprodutibilidade dos Testes , Esquizofrenia/fisiopatologia , Adulto Jovem
5.
Sci Rep ; 11(1): 4905, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649377

RESUMO

Even though sleep modification is a hallmark of the aging process, age-related changes in functional connectivity using functional Magnetic Resonance Imaging (fMRI) during sleep, remain unknown. Here, we combined electroencephalography and fMRI to examine functional connectivity differences between wakefulness and light sleep stages (N1 and N2 stages) in 16 young (23.1 ± 3.3y; 7 women), and 14 older individuals (59.6 ± 5.7y; 8 women). Results revealed extended, distributed (inter-between) and local (intra-within) decreases in network connectivity during sleep both in young and older individuals. However, compared to the young participants, older individuals showed lower decreases in connectivity or even increases in connectivity between thalamus/basal ganglia and several cerebral regions as well as between frontal regions of various networks. These findings reflect a reduced ability of the older brain to disconnect during sleep that may impede optimal disengagement for loss of responsiveness, enhanced lighter and fragmented sleep, and contribute to age effects on sleep-dependent brain plasticity.


Assuntos
Envelhecimento , Rede Nervosa , Fases do Sono , Vigília , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Gigascience ; 8(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077314

RESUMO

BACKGROUND: Clinical trials in Alzheimer's disease need to enroll patients whose cognition will decline over time, if left untreated, in order to demonstrate the efficacy of an intervention. Machine learning models used to screen for patients at risk of progression to dementia should therefore favor specificity (detecting only progressors) over sensitivity (detecting all progressors), especially when the prevalence of progressors is low. Here, we explore whether such high-risk patients can be identified using cognitive assessments and structural neuroimaging by training machine learning tools in a high-specificity regime. RESULTS: A multimodal signature of Alzheimer's dementia was first extracted from the ADNI1 dataset. We then validated the predictive value of this signature on ADNI1 patients with mild cognitive impairment (N = 235). The signature was optimized to predict progression to dementia over 3 years with low sensitivity (55.1%) but high specificity (95.6%), resulting in only moderate accuracy (69.3%) but high positive predictive value (80.4%, adjusted for a "typical" 33% prevalence rate of true progressors). These results were replicated in ADNI2 (N = 235), with 87.8% adjusted positive predictive value (96.7% specificity, 47.3% sensitivity, 85.1% accuracy). CONCLUSIONS: We found that cognitive measures alone could identify high-risk individuals, with structural measurements providing a slight improvement. The signature had comparable receiver operating characteristics to standard machine learning tools, yet a marked improvement in positive predictive value was achieved over the literature by selecting a high-specificity operating point. The multimodal signature can be readily applied for the enrichment of clinical trials.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cognição , Diagnóstico por Computador/métodos , Neuroimagem/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Atrofia , Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Aprendizado de Máquina , Masculino
7.
Schizophr Res ; 192: 167-171, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28601499

RESUMO

Our objective was to assess the generalizability, across sites and cognitive contexts, of schizophrenia classification based on functional brain connectivity. We tested different training-test scenarios combining fMRI data from 191 schizophrenia patients and 191 matched healthy controls obtained at 6 scanning sites and under different task conditions. Diagnosis classification accuracy generalized well to a novel site and cognitive context provided data from multiple sites were used for classifier training. By contrast, lower classification accuracy was achieved when data from a single distinct site was used for training. These findings indicate that it is beneficial to use multisite data to train fMRI-based classifiers intended for large-scale use in the clinical realm.


Assuntos
Encéfalo/diagnóstico por imagem , Generalização Psicológica/fisiologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Adulto Jovem
8.
Alzheimers Dement (Amst) ; 8: 73-85, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28560308

RESUMO

INTRODUCTION: We performed a systematic review and meta-analysis of the Alzheimer's disease (AD) literature to examine consistency of functional connectivity alterations in AD dementia and mild cognitive impairment, using resting-state functional magnetic resonance imaging. METHODS: Studies were screened using a standardized procedure. Multiresolution statistics were performed to assess the spatial consistency of findings across studies. RESULTS: Thirty-four studies were included (1363 participants, average 40 per study). Consistent alterations in connectivity were found in the default mode, salience, and limbic networks in patients with AD dementia, mild cognitive impairment, or in both groups. We also identified a strong tendency in the literature toward specific examination of the default mode network. DISCUSSION: Convergent evidence across the literature supports the use of resting-state connectivity as a biomarker of AD. The locations of consistent alterations suggest that highly connected hub regions in the brain might be an early target of AD.

9.
Data Brief ; 9: 1122-1129, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27924300

RESUMO

We present group eight resolutions of brain parcellations for clusters generated from resting-state functional magnetic resonance images for 99 cognitively normal elderly persons and 129 patients with mild cognitive impairment, pooled from four independent datasets. This dataset was generated as part of the following study: Common Effects of Amnestic Mild Cognitive Impairment on Resting-State Connectivity Across Four Independent Studies (Tam et al., 2015) [1]. The brain parcellations have been registered to both symmetric and asymmetric MNI brain templates and generated using a method called bootstrap analysis of stable clusters (BASC) (Bellec et al., 2010) [2]. We present two variants of these parcellations. One variant contains bihemisphereic parcels (4, 6, 12, 22, 33, 65, 111, and 208 total parcels across eight resolutions). The second variant contains spatially connected regions of interest (ROIs) that span only one hemisphere (10, 17, 30, 51, 77, 199, and 322 total ROIs across eight resolutions). We also present maps illustrating functional connectivity differences between patients and controls for four regions of interest (striatum, dorsal prefrontal cortex, middle temporal lobe, and medial frontal cortex). The brain parcels and associated statistical maps have been publicly released as 3D volumes, available in .mnc and .nii file formats on figshare and on Neurovault. Finally, the code used to generate this dataset is available on Github.

10.
Sci Data ; 2: 150043, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26504522

RESUMO

We present a test-retest dataset of resting-state fMRI data obtained in 80 cognitively normal elderly volunteers enrolled in the "Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease" (PREVENT-AD) Cohort. Subjects with a family history of Alzheimer's disease in first-degree relatives were recruited as part of an on-going double blind randomized clinical trial of Naproxen or placebo. Two pairs of scans were acquired ~3 months apart, allowing the assessment of both intra- and inter-session reliability, with the possible caveat of treatment effects as a source of inter-session variation. Using the NeuroImaging Analysis Kit (NIAK), we report on the standard quality of co-registration and motion parameters of the data, and assess their validity based on the spatial distribution of seed-based connectivity maps as well as intra- and inter-session reliability metrics in the default-mode network. This resource, released publicly as sample UM1 of the Consortium for Reliability and Reproducibility (CoRR), will benefit future studies focusing on the preclinical period preceding the appearance of dementia in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Estudos de Coortes , Demência/complicações , Demência/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Reprodutibilidade dos Testes
11.
Front Aging Neurosci ; 7: 242, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733866

RESUMO

Resting-state functional connectivity is a promising biomarker for Alzheimer's disease. However, previous resting-state functional magnetic resonance imaging studies in Alzheimer's disease and amnestic mild cognitive impairment (aMCI) have shown limited reproducibility as they have had small sample sizes and substantial variation in study protocol. We sought to identify functional brain networks and connections that could consistently discriminate normal aging from aMCI despite variations in scanner manufacturer, imaging protocol, and diagnostic procedure. We therefore combined four datasets collected independently, including 112 healthy controls and 143 patients with aMCI. We systematically tested multiple brain connections for associations with aMCI using a weighted average routinely used in meta-analyses. The largest effects involved the superior medial frontal cortex (including the anterior cingulate), dorsomedial prefrontal cortex, striatum, and middle temporal lobe. Compared with controls, patients with aMCI exhibited significantly decreased connectivity between default mode network nodes and between regions of the cortico-striatal-thalamic loop. Despite the heterogeneity of methods among the four datasets, we identified common aMCI-related connectivity changes with small to medium effect sizes and sample size estimates recommending a minimum of 140 to upwards of 600 total subjects to achieve adequate statistical power in the context of a multisite study with 5-10 scanning sites and about 10 subjects per group and per site. If our findings can be replicated and associated with other established biomarkers of Alzheimer's disease (e.g., amyloid and tau quantification), then these functional connections may be promising candidate biomarkers for Alzheimer's disease.

12.
Front Neurosci ; 8: 419, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565949

RESUMO

The spatial coherence of spontaneous slow fluctuations in the blood-oxygen-level dependent (BOLD) signal at rest is routinely used to characterize the underlying resting-state networks (RSNs). Studies have demonstrated that these patterns are organized in space and highly reproducible from subject to subject. Moreover, RSNs reorganizations have been suggested in pathological conditions. Comparisons of RSNs organization have been performed between groups of subjects but have rarely been applied at the individual level, a step required for clinical application. Defining the notion of modularity as the organization of brain activity in stable networks, we propose Detection of Abnormal Networks in Individuals (DANI) to identify modularity changes at the individual level. The stability of each RSN was estimated using a spatial clustering method: Bootstrap Analysis of Stable Clusters (BASC) (Bellec et al., 2010). Our contributions consisted in (i) providing functional maps of the most stable cores of each networks and (ii) in detecting "abnormal" individual changes in networks organization when compared to a population of healthy controls. DANI was first evaluated using realistic simulated data, showing that focussing on a conservative core size (50% most stable regions) improved the sensitivity to detect modularity changes. DANI was then applied to resting state fMRI data of six patients with focal epilepsy who underwent multimodal assessment using simultaneous EEG/fMRI acquisition followed by surgery. Only patient with a seizure free outcome were selected and the resected area was identified using a post-operative MRI. DANI automatically detected abnormal changes in 5 out of 6 patients, with excellent sensitivity, showing for each of them at least one "abnormal" lateralized network closely related to the epileptic focus. For each patient, we also detected some distant networks as abnormal, suggesting some remote reorganization in the epileptic brain.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa