Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010330

RESUMO

Parkinson's Disease (PD) is a brain disorder that causes uncontrollable movements. According to estimation, roughly ten million individuals worldwide have had or are developing PD. This disorder can have severe consequences that affect the patient's daily life. Therefore, several previous works have worked on PD detection. Automatic Parkinson's Disease detection in voice recordings can be an innovation compared to other costly methods of ruling out examinations since the nature of this disease is unpredictable and non-curable. Analyzing the collected vocal records will detect essential patterns, and timely recommendations on appropriate treatments will be extremely helpful. This research proposed a machine learning-based approach for classifying healthy people from people with the disease utilizing Grey Wolf Optimization (GWO) for feature selection, along with Light Gradient Boosted Machine (LGBM) to optimize the model performance. The proposed method shows highly competitive results and has the ability to be developed further and implemented in a real-world setting.

2.
Diagnostics (Basel) ; 12(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36428941

RESUMO

Epileptic seizure is a neurological condition caused by short and unexpectedly occurring electrical disruptions in the brain. It is estimated that roughly 60 million individuals worldwide have had an epileptic seizure. Experiencing an epileptic seizure can have serious consequences for the patient. Automatic seizure detection on electroencephalogram (EEG) recordings is essential due to the irregular and unpredictable nature of seizures. By thoroughly analyzing EEG records, neurophysiologists can discover important information and patterns, and proper and timely treatments can be provided for the patients. This research presents a novel machine learning-based approach for detecting epileptic seizures in EEG signals. A public EEG dataset from the University of Bonn was used to validate the approach. Meaningful statistical features were extracted from the original data using discrete wavelet transform analysis, then the relevant features were selected using feature selection based on the binary particle swarm optimizer. This facilitated the reduction of 75% data dimensionality and 47% computational time, which eventually sped up the classification process. After having been selected, relevant features were used to train different machine learning models, then hyperparameter optimization was utilized to further enhance the models' performance. The results achieved up to 98.4% accuracy and showed that the proposed method was very effective and practical in detecting seizure presence in EEG signals. In clinical applications, this method could help relieve the suffering of epilepsy patients and alleviate the workload of neurologists.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa