Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(40): 24802-24812, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958664

RESUMO

The oligoadenylate synthetase (OAS)-RNase L system is an IFN-inducible antiviral pathway activated by viral infection. Viral double-stranded (ds) RNA activates OAS isoforms that synthesize the second messenger 2-5A, which binds and activates the pseudokinase-endoribonuclease RNase L. In cells, OAS activation is tamped down by ADAR1, an adenosine deaminase that destabilizes dsRNA. Mutation of ADAR1 is one cause of Aicardi-Goutières syndrome (AGS), an interferonopathy in children. ADAR1 deficiency in human cells can lead to RNase L activation and subsequent cell death. To evaluate RNase L as a possible therapeutic target for AGS, we sought to identify small-molecule inhibitors of RNase L. A 500-compound library of protein kinase inhibitors was screened for modulators of RNase L activity in vitro. We identified ellagic acid (EA) as a hit with 10-fold higher selectivity against RNase L compared with its nearest paralog, IRE1. SAR analysis identified valoneic acid dilactone (VAL) as a superior inhibitor of RNase L, with 100-fold selectivity over IRE1. Mechanism-of-action analysis indicated that EA and VAL do not bind to the pseudokinase domain of RNase L despite acting as ATP competitive inhibitors of the protein kinase CK2. VAL is nontoxic and functional in cells, although with a 1,000-fold decrease in potency, as measured by RNA cleavage activity in response to treatment with dsRNA activator or by rescue of cell lethality resulting from self dsRNA induced by ADAR1 deficiency. These studies lay the foundation for understanding novel modes of regulating RNase L function using small-molecule inhibitors and avenues of therapeutic potential.


Assuntos
Adenosina Desaminase/deficiência , Doenças Autoimunes do Sistema Nervoso/enzimologia , Endorribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Malformações do Sistema Nervoso/enzimologia , Fenol/farmacologia , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina/metabolismo , Adenosina Desaminase/genética , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Morte Celular/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inibidores Enzimáticos/química , Humanos , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/fisiopatologia , Oligorribonucleotídeos/metabolismo , Fenol/química , Proteínas de Ligação a RNA/genética
2.
J Cell Sci ; 133(4)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32005696

RESUMO

USP16 (also known as UBP-M) has emerged as a histone H2AK119 deubiquitylase (DUB) implicated in the regulation of chromatin-associated processes and cell cycle progression. Despite this, available evidence suggests that this DUB is also present in the cytoplasm. How the nucleo-cytoplasmic transport of USP16, and hence its function, is regulated has remained elusive. Here, we show that USP16 is predominantly cytoplasmic in all cell cycle phases. We identified the nuclear export signal (NES) responsible for maintaining USP16 in the cytoplasm. We found that USP16 is only transiently retained in the nucleus following mitosis and then rapidly exported from this compartment. We also defined a non-canonical nuclear localization signal (NLS) sequence that plays a minimal role in directing USP16 into the nucleus. We further established that this DUB does not accumulate in the nucleus following DNA damage. Instead, only enforced nuclear localization of USP16 abolishes DNA double-strand break (DSB) repair, possibly due to unrestrained DUB activity. Thus, in contrast to the prevailing view, our data indicate that USP16 is actively excluded from the nucleus and that this DUB might indirectly regulate DSB repair.This article has an associated First Person interview with the first author of the paper.


Assuntos
Núcleo Celular , Sinais de Exportação Nuclear , Transporte Ativo do Núcleo Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Interfase , Sinais de Exportação Nuclear/genética , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo
3.
Nat Chem Biol ; 16(11): 1170-1178, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778845

RESUMO

The RAF family kinases function in the RAS-ERK pathway to transmit signals from activated RAS to the downstream kinases MEK and ERK. This pathway regulates cell proliferation, differentiation and survival, enabling mutations in RAS and RAF to act as potent drivers of human cancers. Drugs targeting the prevalent oncogenic mutant BRAF(V600E) have shown great efficacy in the clinic, but long-term effectiveness is limited by resistance mechanisms that often exploit the dimerization-dependent process by which RAF kinases are activated. Here, we investigated a proteolysis-targeting chimera (PROTAC) approach to BRAF inhibition. The most effective PROTAC, termed P4B, displayed superior specificity and inhibitory properties relative to non-PROTAC controls in BRAF(V600E) cell lines. In addition, P4B displayed utility in cell lines harboring alternative BRAF mutations that impart resistance to conventional BRAF inhibitors. This work provides a proof of concept for a substitute to conventional chemical inhibition to therapeutically constrain oncogenic BRAF.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Talidomida , Ubiquitina , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Terapia de Alvo Molecular , Mutação , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteólise , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Relação Estrutura-Atividade , Talidomida/análogos & derivados , Talidomida/química , Ubiquitina/química
4.
Mol Cell ; 54(3): 392-406, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24703950

RESUMO

The tumor suppressor BAP1 interacts with chromatin-associated proteins and regulates cell proliferation, but its mechanism of action and regulation remain poorly defined. We show that the ubiquitin-conjugating enzyme UBE2O multi-monoubiquitinates the nuclear localization signal of BAP1, thereby inducing its cytoplasmic sequestration. This activity is counteracted by BAP1 autodeubiquitination through intramolecular interactions. Significantly, we identified cancer-derived BAP1 mutations that abrogate autodeubiquitination and promote its cytoplasmic retention, indicating that BAP1 autodeubiquitination ensures tumor suppression. The antagonistic relationship between UBE2O and BAP1 is also observed during adipogenesis, whereby UBE2O promotes differentiation and cytoplasmic localization of BAP1. Finally, we established a putative targeting consensus sequence of UBE2O and identified numerous chromatin remodeling factors as potential targets, several of which tested positive for UBE2O-mediated ubiquitination. Thus, UBE2O defines an atypical ubiquitin-signaling pathway that coordinates the function of BAP1 and establishes a paradigm for regulation of nuclear trafficking of chromatin-associated proteins.


Assuntos
Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Células 3T3-L1 , Adipócitos/fisiologia , Sequência de Aminoácidos , Animais , Diferenciação Celular , Sequência Consenso , Citoplasma/metabolismo , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Neoplasias/genética , Sinais de Localização Nuclear , Transporte Proteico , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética
5.
Nature ; 552(7683): 38-39, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29219973
6.
PLoS Genet ; 10(12): e1004827, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474253

RESUMO

IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD) complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associated with the HDAC-containing complex NuRD. IKAROS also binds to the Positive-Transcription Elongation Factor b (P-TEFb) at gene promoters. Here, we demonstrate that NuRD and P-TEFb are assembled in a complex that can be recruited to specific genes by IKAROS. The expression level of IKAROS influences the recruitment of the NuRD-P-TEFb complex to gene regulatory regions and facilitates transcription elongation by transferring the Protein Phosphatase 1α (PP1α), an IKAROS-binding protein and P-TEFb activator, to CDK9. We show that an IKAROS mutant that is unable to bind PP1α cannot sustain gene expression and impedes normal differentiation of Ik(NULL) hematopoietic progenitors. Finally, the knock-down of the NuRD subunit Mi2 reveals that the occupancy of the NuRD complex at transcribed regions of genes favors the relief of POL II promoter-proximal pausing and thereby, promotes transcription elongation.


Assuntos
Montagem e Desmontagem da Cromatina , Hematopoese , Fator de Transcrição Ikaros/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Animais , Células COS , Chlorocebus aethiops , Montagem e Desmontagem da Cromatina/genética , Hematopoese/genética , Humanos , Fator de Transcrição Ikaros/genética , Células Jurkat , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos , Camundongos Knockout , Nucleossomos/metabolismo , Ligação Proteica , RNA Polimerase II/metabolismo , Ativação Transcricional
7.
Proc Natl Acad Sci U S A ; 111(1): 285-90, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24347639

RESUMO

The cellular response to highly genotoxic DNA double-strand breaks (DSBs) involves the exquisite coordination of multiple signaling and repair factors. Here, we conducted a functional RNAi screen and identified BAP1 as a deubiquitinase required for efficient assembly of the homologous recombination (HR) factors BRCA1 and RAD51 at ionizing radiation (IR) -induced foci. BAP1 is a chromatin-associated protein frequently inactivated in cancers of various tissues. To further investigate the role of BAP1 in DSB repair, we used a gene targeting approach to knockout (KO) this deubiquitinase in chicken DT40 cells. We show that BAP1-deficient cells are (i) sensitive to IR and other agents that induce DSBs, (ii) defective in HR-mediated immunoglobulin gene conversion, and (iii) exhibit an increased frequency of chromosomal breaks after IR treatment. We also show that BAP1 is recruited to chromatin in the proximity of a single site-specific I-SceI-induced DSB. Finally, we identified six IR-induced phosphorylation sites in BAP1 and showed that mutation of these residues inhibits BAP1 recruitment to DSB sites. We also found that both BAP1 catalytic activity and its phosphorylation are critical for promoting DNA repair and cellular recovery from DNA damage. Our data reveal an important role for BAP1 in DSB repair by HR, thereby providing a possible molecular basis for its tumor suppressor function.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Recombinação Homóloga , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Proteína BRCA1/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Galinhas , Dano ao DNA , Células HEK293 , Células HeLa , Humanos , Imunoglobulinas/genética , Células MCF-7 , Microscopia de Fluorescência , Mutação , Neoplasias/genética , Fenótipo , Fosforilação , Rad51 Recombinase , Radiação Ionizante
8.
J Biol Chem ; 290(48): 28643-63, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26416890

RESUMO

The deubiquitinase (DUB) and tumor suppressor BAP1 catalyzes ubiquitin removal from histone H2A Lys-119 and coordinates cell proliferation, but how BAP1 partners modulate its function remains poorly understood. Here, we report that BAP1 forms two mutually exclusive complexes with the transcriptional regulators ASXL1 and ASXL2, which are necessary for maintaining proper protein levels of this DUB. Conversely, BAP1 is essential for maintaining ASXL2, but not ASXL1, protein stability. Notably, cancer-associated loss of BAP1 expression results in ASXL2 destabilization and hence loss of its function. ASXL1 and ASXL2 use their ASXM domains to interact with the C-terminal domain (CTD) of BAP1, and these interactions are required for ubiquitin binding and H2A deubiquitination. The deubiquitination-promoting effect of ASXM requires intramolecular interactions between catalytic and non-catalytic domains of BAP1, which generate a composite ubiquitin-binding interface (CUBI). Notably, the CUBI engages multiple interactions with ubiquitin involving (i) the ubiquitin carboxyl hydrolase catalytic domain of BAP1, which interacts with the hydrophobic patch of ubiquitin, and (ii) the CTD domain, which interacts with a charged patch of ubiquitin. Significantly, we identified cancer-associated mutations of BAP1 that disrupt the CUBI and notably an in-frame deletion in the CTD that inhibits its interaction with ASXL1/2 and DUB activity and deregulates cell proliferation. Moreover, we demonstrated that BAP1 interaction with ASXL2 regulates cell senescence and that ASXL2 cancer-associated mutations disrupt BAP1 DUB activity. Thus, inactivation of the BAP1/ASXL2 axis might contribute to cancer development.


Assuntos
Proliferação de Células , Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina/genética
9.
Proc Natl Acad Sci U S A ; 108(7): 2747-52, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21285374

RESUMO

Host Cell Factor 1 (HCF-1) plays critical roles in regulating gene expression in a plethora of physiological processes. HCF-1 is first synthesized as a precursor, and subsequently specifically proteolytically cleaved within a large middle region termed the proteolytic processing domain (PPD). Although the underlying mechanism remains enigmatic, proteolysis of HCF-1 regulates its transcriptional activity and is important for cell cycle progression. Here we report that HCF-1 proteolysis is a regulated process. We demonstrate that a large proportion of the signaling enzyme O-linked-N-acetylglucosaminyl transferase (OGT) is complexed with HCF-1 and this interaction is essential for HCF-1 cleavage. Moreover, HCF-1 is, in turn, required for stabilizing OGT in the nucleus. We provide evidence indicating that OGT regulates HCF-1 cleavage via interaction with and O-GlcNAcylation of the HCF-1 PPD. In contrast, although OGT also interacts with the basic domain in the HCF-1 amino-terminal subunit, neither the interaction nor the O-GlcNAcylation of this region are required for proteolysis. Moreover, we show that OGT-mediated modulation of HCF-1 impacts the expression of the herpes simplex virus immediate-early genes, targets of HCF-1 during the initiation of viral infection. Together the data indicate that O-GlcNAcylation of HCF-1 is a signal for its proteolytic processing and reveal a unique crosstalk between these posttranslational modifications. Additionally, interactions of OGT with multiple HCF-1 domains may indicate that OGT has several functions in association with HCF-1.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator C1 de Célula Hospedeira/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Western Blotting , Linhagem Celular , Imunoprecipitação da Cromatina , Imunofluorescência , Regulação da Expressão Gênica/genética , Humanos , Proteínas Imediatamente Precoces/metabolismo , Imunoprecipitação , Mutagênese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simplexvirus/metabolismo
10.
Structure ; 32(6): 795-811.e6, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38531363

RESUMO

GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.


Assuntos
Ligação Proteica , Proteínas Serina-Treonina Quinases , RNA de Transferência , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , RNA de Transferência/metabolismo , RNA de Transferência/química , Sítios de Ligação , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Microscopia Crioeletrônica , Simulação de Acoplamento Molecular , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Histidina/metabolismo , Histidina/química , Fosforilação
11.
Proteomics ; 13(6): 982-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23335398

RESUMO

The development of electron-based, unimolecular dissociation MS, i.e. electron capture and electron transfer dissociation (ECD and ETD, respectively), has greatly increased the speed and reliability of labile PTM site assignment. The field of intracellular O-GlcNAc (O-linked N-acetylglucosamine) signaling has especially advanced with the advent of ETD MS. Only within the last five years have proteomic-scale experiments utilizing ETD allowed the assignment of hundreds of O-GlcNAc sites within cells and subcellular structures. Our ability to identify and unambiguously assign the site of O-GlcNAc modifications using ETD is rapidly increasing our understanding of this regulatory glycosylation and its potential interaction with other PTMs. Here, we discuss the advantages of using ETD, complimented with collisional-activation MS, in a study of the extensively O-GlcNAcylated protein Host Cell Factor C1 (HCF-1). HCF-1 is a transcriptional coregulator that forms a stable complex with O-GlcNAc transferase and controls cell cycle progression. ETD, along with higher energy collisional dissociation (HCD) MS, was employed to assign the PTMs of the HCF-1 protein isolated from HEK293T cells. These include 19 sites of O-GlcNAcylation, two sites of phosphorylation, and two sites bearing dimethylarginine, and showcase the residue-specific, PTM complexity of this regulator of cell proliferation.


Assuntos
Fator C1 de Célula Hospedeira/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Glicopeptídeos/química , Glicopeptídeos/isolamento & purificação , Glicosilação , Células HEK293 , Fator C1 de Célula Hospedeira/isolamento & purificação , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
12.
iScience ; 26(5): 106276, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37168555

RESUMO

Ubiquitination is an important post-translational modification (PTM) that regulates a large spectrum of cellular processes in eukaryotes. Abnormalities in ubiquitin signaling underlie numerous human pathologies including cancer and neurodegeneration. Much progress has been made during the last three decades in understanding how ubiquitin ligases recognize their substrates and how ubiquitination is orchestrated. Several mechanisms of regulation have evolved to prevent promiscuity including the assembly of ubiquitin ligases in multi-protein complexes with dedicated subunits and specific post-translational modifications of these enzymes and their co-factors. Here, we outline another layer of complexity involving the coordinated access of E3 ligases to substrates. We provide an extensive inventory of ubiquitination crosstalk with multiple PTMs including SUMOylation, phosphorylation, methylation, acetylation, hydroxylation, prolyl isomerization, PARylation, and O-GlcNAcylation. We discuss molecular mechanisms by which PTMs orchestrate ubiquitination, thus increasing its specificity as well as its crosstalk with other signaling pathways to ensure cell homeostasis.

13.
Nat Commun ; 12(1): 6984, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848715

RESUMO

Eukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalian proteasome undergoes liquid-liquid phase separation in the nucleus upon amino acid deprivation. We termed these proteasome condensates SIPAN (Starvation-Induced Proteasome Assemblies in the Nucleus) and show that these are a common response of mammalian cells to amino acid deprivation. SIPAN undergo fusion events, rapidly exchange proteasome particles with the surrounding milieu and quickly dissolve following amino acid replenishment. We further show that: (i) SIPAN contain K48-conjugated ubiquitin, (ii) proteasome inhibition accelerates SIPAN formation, (iii) deubiquitinase inhibition prevents SIPAN resolution and (iv) RAD23B proteasome shuttling factor is required for SIPAN formation. Finally, SIPAN formation is associated with decreased cell survival and p53-mediated apoptosis, which might contribute to tissue fitness in diverse pathophysiological conditions.


Assuntos
Aminoácidos/metabolismo , Apoptose/fisiologia , Núcleo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inanição , Animais , Autoantígenos , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Eucarióticas , Exercício Físico , Fibroblastos , Humanos , Camundongos , Nutrientes , Biossíntese de Proteínas , Proteólise , Estresse Fisiológico , Ubiquitina
14.
Nat Commun ; 11(1): 5947, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230107

RESUMO

Histone posttranslational modifications are key regulators of chromatin-associated processes including gene expression, DNA replication and DNA repair. Monoubiquitinated histone H2A, H2Aub (K118 in Drosophila or K119 in vertebrates) is catalyzed by the Polycomb group (PcG) repressive complex 1 (PRC1) and reversed by the PcG-repressive deubiquitinase (PR-DUB)/BAP1 complex. Here we critically assess the current knowledge regarding H2Aub deposition and removal, its crosstalk with PcG repressive complex 2 (PRC2)-mediated histone H3K27 methylation, and the recent attempts toward discovering its readers and solving its enigmatic functions. We also discuss mounting evidence of the involvement of H2A ubiquitination in human pathologies including cancer, while highlighting some knowledge gaps that remain to be addressed.


Assuntos
Cromatina/metabolismo , Epigênese Genética , Histonas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Ubiquitinação , Animais , Enzimas Desubiquitinantes/metabolismo , Humanos , Metilação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas do Grupo Polycomb/química , Proteínas do Grupo Polycomb/genética
15.
J Vis Exp ; (149)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31403616

RESUMO

Ubiquitination is a post-translational modification that plays important roles in various signaling pathways and is notably involved in the coordination of chromatin function and DNA-associated processes. This modification involves a sequential action of several enzymes including E1 ubiquitin-activating, E2 ubiquitin-conjugating and E3 ubiquitin-ligase and is reversed by deubiquitinases (DUBs). Ubiquitination induces degradation of proteins or alteration of protein function including modulation of enzymatic activity, protein-protein interaction and subcellular localization. A critical step in demonstrating protein ubiquitination or deubiquitination is to perform in vitro reactions with purified components. Effective ubiquitination and deubiquitination reactions could be greatly impacted by the different components used, enzyme co-factors, buffer conditions, and the nature of the substrate.  Here, we provide step-by-step protocols for conducting ubiquitination and deubiquitination reactions. We illustrate these reactions using minimal components of the mouse Polycomb Repressive Complex 1 (PRC1), BMI1, and RING1B, an E3 ubiquitin ligase that monoubiquitinates histone H2A on lysine 119. Deubiquitination of nucleosomal H2A is performed using a minimal Polycomb Repressive Deubiquitinase (PR-DUB) complex formed by the human deubiquitinase BAP1 and the DEUBiquitinase ADaptor (DEUBAD) domain of its co-factor ASXL2. These ubiquitination/deubiquitination assays can be conducted in the context of either recombinant nucleosomes reconstituted with bacteria-purified proteins or native nucleosomes purified from mammalian cells. We highlight the intricacies that can have a significant impact on these reactions and we propose that the general principles of these protocols can be swiftly adapted to other E3 ubiquitin ligases and deubiquitinases.


Assuntos
Histonas/metabolismo , Nucleossomos/química , Ubiquitinação , Animais , Células HEK293 , Humanos , Camundongos
16.
Nat Commun ; 9(1): 4385, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349006

RESUMO

The tumor suppressor and deubiquitinase (DUB) BAP1 and its Drosophila ortholog Calypso assemble DUB complexes with the transcription regulators Additional sex combs-like (ASXL1, ASXL2, ASXL3) and Asx respectively. ASXLs and Asx use their DEUBiquitinase ADaptor (DEUBAD) domain to stimulate BAP1/Calypso DUB activity. Here we report that monoubiquitination of the DEUBAD is a general feature of ASXLs and Asx. BAP1 promotes DEUBAD monoubiquitination resulting in an increased stability of ASXL2, which in turn stimulates BAP1 DUB activity. ASXL2 monoubiquitination is directly catalyzed by UBE2E family of Ubiquitin-conjugating enzymes and regulates mammalian cell proliferation. Remarkably, Calypso also regulates Asx monoubiquitination and transgenic flies expressing monoubiquitination-defective Asx mutant exhibit developmental defects. Finally, the protein levels of ASXL2, BAP1 and UBE2E enzymes are highly correlated in mesothelioma tumors suggesting the importance of this signaling axis for tumor suppression. We propose that monoubiquitination orchestrates a molecular symbiosis relationship between ASXLs and BAP1.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/genética , Ubiquitinação/fisiologia
17.
Epigenetics ; 10(8): 677-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075789

RESUMO

O-GlcNAcylation is a posttranslational modification catalyzed by the O-Linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and reversed by O-GlcNAcase (OGA). Numerous transcriptional regulators, including chromatin modifying enzymes, transcription factors, and co-factors, are targeted by O-GlcNAcylation, indicating that this modification is central for chromatin-associated processes. Recently, OGT-mediated O-GlcNAcylation was reported to be a novel histone modification, suggesting a potential role in directly coordinating chromatin structure and function. In contrast, using multiple biochemical approaches, we report here that histone O-GlcNAcylation is undetectable in mammalian cells. Conversely, O-GlcNAcylation of the transcription regulators Host Cell Factor-1 (HCF-1) and Ten-Eleven Translocation protein 2 (TET2) could be readily observed. Our study raises questions on the occurrence and abundance of O-GlcNAcylation as a histone modification in mammalian cells and reveals technical complications regarding the detection of genuine protein O-GlcNAcylation. Therefore, the identification of the specific contexts in which histone O-GlcNAcylation might occur is still to be established.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Histonas/genética , Fator C1 de Célula Hospedeira/genética , Proteínas Proto-Oncogênicas/genética , beta-N-Acetil-Hexosaminidases/genética , Acilação , Animais , Cromatina/genética , Dioxigenases , Glicosilação , Células HEK293 , Histonas/metabolismo , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/genética , beta-N-Acetil-Hexosaminidases/metabolismo
18.
Mol Cell Biol ; 30(21): 5071-85, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20805357

RESUMO

The candidate tumor suppressor BAP1 is a deubiquitinating enzyme (DUB) involved in the regulation of cell proliferation, although the molecular mechanisms governing its function remain poorly defined. BAP1 was recently shown to interact with and deubiquitinate the transcriptional regulator host cell factor 1 (HCF-1). Here we show that BAP1 assembles multiprotein complexes containing numerous transcription factors and cofactors, including HCF-1 and the transcription factor Yin Yang 1 (YY1). Through its coiled-coil motif, BAP1 directly interacts with the zinc fingers of YY1. Moreover, HCF-1 interacts with the middle region of YY1 encompassing the glycine-lysine-rich domain and is essential for the formation of a ternary complex with YY1 and BAP1 in vivo. BAP1 activates transcription in an enzymatic-activity-dependent manner and regulates the expression of a variety of genes involved in numerous cellular processes. We further show that BAP1 and HCF-1 are recruited by YY1 to the promoter of the cox7c gene, which encodes a mitochondrial protein used here as a model of BAP1-activated gene expression. Our findings (i) establish a direct link between BAP1 and the transcriptional control of genes regulating cell growth and proliferation and (ii) shed light on a novel mechanism of transcription regulation involving ubiquitin signaling.


Assuntos
Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo , Fator de Transcrição YY1/química , Fator de Transcrição YY1/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Bovinos , Linhagem Celular , Proliferação de Células , DNA/genética , DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Células HeLa , Fator C1 de Célula Hospedeira/antagonistas & inibidores , Fator C1 de Célula Hospedeira/genética , Humanos , Técnicas In Vitro , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Complexos Multiproteicos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Interferência de RNA , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais , Ativação Transcricional , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Ubiquitinação , Fator de Transcrição YY1/antagonistas & inibidores , Fator de Transcrição YY1/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa