Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 30(3): 557-564, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32219628

RESUMO

We herein report five different types of thiol dual capped cadmium tellurite quantum dots (CdTe QDs) namely glutathione-mercapto-propanoic acid (QD 1), glutathione-thiolglycolic acid (QD 2), L-cysteine-mercapto-propanoic acid (QD 3), L-cysteine- thiol-glycolic acid (QD 4) and mercapto-propanoic acid-thiol-glycolic (QD 5). Dual-capped CdTe QDs were prepared using a one pot synthetic method. Cadmium acetate and sodium tellurite were respectively used as cadmium and tellurium precursors. Photo-physical properties of the synthesized QDs were examined using UV-Vis and photoluminescence spectroscopy while structural characterization was performed by means of transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The influence of pH on QD characteristics (fluorescence intensity) was studied using phosphate and citrate buffers and continuous titration with HCl (0.1 N). UV-vis and photoluminescence spectra exhibited sharp absorption band edge with high intensities and improved colloidal stability. All the QDs were found to be in nano-size rang. TEM analysis revealed the presence of spherical nanoparticles while FTIR evidenced successful dual-capping of QDs. Upon pH changes, QDs 3 and 4 demonstrated more remarkable variations in fluorescence intensity than QDs 1 and 2. The pH-sensitivity of these QDs represents a promising feature for further development of potential theranostic nano-devices.


Assuntos
Compostos de Cádmio/química , Pontos Quânticos/química , Telúrio/química , Compostos de Cádmio/síntese química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Fenômenos Ópticos , Tamanho da Partícula , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Compostos de Sulfidrila/química , Propriedades de Superfície
2.
Nanomaterials (Basel) ; 11(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062720

RESUMO

CdTe QDs has been demonstrated in many studies to possess good outstanding optical and photo-physical properties. However, it has been established from literature that the toxic Cd2+ that tends to leak out into nearby solutions can be protected by less toxic ZnS or ZnSe shells leading to the synthesis of core-shells and multi-core-shells. Hence, this has allowed the synthesis of CdTe multi-core-shells to have gained much interest. The preparation of most CdTe multi-core-shells reported from various studies usually has a longer reaction time (6-24 h) in reaching their highest emission maxima. The synthesis of CdTe multi-core-shells in this study only took 35 min to obtain a highest emission maximum compared to what has been reported from the literature. CdTe multi-core-shells were synthesized by injecting 7, 14, and 21 mL each of Zn complex solution and Se ions into the reacting mixture containing CdTe core-shells (3 h) at 5 min intervals over a 35 min reaction time. The emission maxima of the MPA-TGA-CdTe multi-core-shells at 21 mL injection was recorded around 625 nm. Therefore, we are reporting the rapid synthesis of five different thiol co-capped CdTe/CdSe/ZnSe multi-core-shell QDs with the highest emission maxima obtained at 35 min reaction time.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa