Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Langmuir ; 40(1): 201-210, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38101331

RESUMO

Galinstan is the brand name for a low-melting gallium-based alloy, which is a promising nontoxic alternative to mercury, the only elemental metal found in the liquid state at room temperature. Liquid alloys such as Galinstan have found applications as electromechanical actuators, sensors, and soft contacts for molecular electronics. In this work, we validate the scope of Galinstan top contacts to probe the electrical characteristics of Schottky junctions made on Si(111) and Si(211) crystals modified with Si-C-bound organic monolayers. We show that the surface-to-volume ratio of the Galinstan drop used as a macroscopic contact defines the junction stability. Further, we explore chemical strategies to increase Galinstan surface tension to obtain control over the junction area, hence improving the repeatability and reproducibility of current-voltage (I-V) measurements. We explore Galinstan top contacts as a means to monitor changes in rectification ratios caused by surface reactions and use these data, most notably the static junction leakage, toward making qualitative predictions on the DC outputs recorded when these semiconductor systems are incorporated in Schottky-based triboelectric nanogenerators. We found that the introduction of iron particles leads to poor data repeatability for capacitance-voltage (C-V) measurements but has only a small negative impact in a dynamic current measurement (I-V).

2.
Small ; : e2300577, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010011

RESUMO

Reducing resistance in silicon-based devices is important as they get miniaturized further. 2D materials offer an opportunity to increase conductivity whilst reducing size. A scalable, environmentally benign method is developed for preparing partially oxidized gallium/indium sheets down to 10 nm thick from a eutectic melt of the two metals. Exfoliation of the planar/corrugated oxide skin of the melt is achieved using the vortex fluidic device with a variation in composition across the sheets determined using Auger spectroscopy. From an application perspective, the oxidized gallium indium sheets reduce the contact resistance between metals such as platinum and silicon (Si) as a semiconductor. Current-voltage measurements between a platinum atomic force microscopy tip and a Si-H substrate show that the current switches from being a rectifier to a highly conducting ohmic contact. These characteristics offer new opportunities for controlling Si surface properties at the nanoscale and enable the integration of new materials with Si platforms.

3.
Catheter Cardiovasc Interv ; 102(4): 672-682, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37545179

RESUMO

BACKGROUND: Endovascular treatment of aortic coarctation (CoA) in children and adults frequently requires stent implantation. The aim of this study was to analyze long-term results after CoA treatment with bare and covered Cheatham-PlatinumTM (CP) stents in our institution and to derive recommendations for the differential use of these stent types. METHODS: In this retrospective single institution study, 212 patients received endovascular CoA treatment with bare (n = 71) and covered (n = 141) CP stents between September 1999 and July 2021, respectively. The indications for treatment were native CoA in 110/212 patients (51.9%) and re-coarctation after primary surgical or interventional treatment in 102/212 patients (48.1%). Median patient age at endovascular CoA treatment was 18.8 years [IQR 11.9; 35.8]. Long-term follow-up was available in 158/212 patients (74.5%) with a median follow-up of 7.3 years [IQR 4.3; 12.6]. RESULTS: Procedural success was achieved in 187/212 (88.2%) patients. Survival rate was 98.1% after 5, and 95.6% after 10 and 15 years, respectively. The probability of freedom from re-intervention was 93.0% after 5, 82.3% after 10 and 77.8% after 15 years, respectively. Freedom from re-interventions (44/158, 27.8%) did not differ between patients who received bare or covered CP stents (p = 0.715). Multivariable risk factor analysis identified previous CoA surgery (HR: 2.0, 95% confidence interval (CI): 1.1-3,9, p = 0.029), postdilatation (HR: 2,9, 95% CI: 1.1-6.3, p = 0.028) and age at intervention (HR: 0.96, 95% CI: 0.94-0.99, p = 0.002) as independent risk factors for re-intervention. Peri-procedural complications occurred in 15/212 (7.1%) patients (dissection/thrombosis of vascular access vessel: n = 9; bleeding: n = 1; stent dislocation: n = 2; aortic dissection/aortic wall rupture: n = 3). Long-term complications were observed in 36 patients and included stent fracture (n = 19), aneurysm formation (n = 14), endoleak (n = 1) and subclavian artery stenosis (n = 2). Peri-procedural and long-term complications did not differ between patients who received CoA treatment with bare or covered CP stents (all p > 0.05). CONCLUSION: Endovascular treatment of CoA using bare or covered CP stents can be performed safely and effectively with excellent long-term results. Survival, re-intervention and complication rate did not significantly differ between both stent types. However, individual stent selection is advisable with regard to CoA morphology and severity as well as patient age.


Assuntos
Coartação Aórtica , Procedimentos Endovasculares , Adulto , Criança , Humanos , Coartação Aórtica/diagnóstico por imagem , Coartação Aórtica/terapia , Coartação Aórtica/complicações , Seguimentos , Platina , Estudos Retrospectivos , Resultado do Tratamento , Stents/efeitos adversos , Procedimentos Endovasculares/efeitos adversos
4.
Langmuir ; 38(9): 2986-2992, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35220713

RESUMO

Electric fields can induce bond breaking and bond forming, catalyze chemical reactions on surfaces, and change the structure of self-assembled monolayers on electrode surfaces. Here, we study the effect of electric fields supplied either by an electrochemical potential or by conducting atomic force microscopy (C-AFM) on Si-based monolayers. We report that typical monolayers on silicon undergo partial desorption followed by the oxidation of the underneath silicon at +1.5 V vs Ag/AgCl. The monolayer loses 28% of its surface coverage and 55% of its electron transfer rate constant (ket) when +1.5 V electrochemical potential is applied on the Si surface for 10 min. Similarly, a bias voltage of +5 V applied by C-AFM induces complete desorption of the monolayer at specific sites accompanied by an average oxide growth of 2.6 nm when the duration of the bias applied is 8 min. Current-voltage plots progressively change from rectifying, typical of metal-semiconductor junctions, to insulating as the oxide grows. These results define the stability of Si-based organic monolayers toward electric fields and have implication in the design of silicon-based monolayers, molecular electronics devices, and on the interpretation of charge-transfer kinetics across them.

5.
Langmuir ; 38(2): 743-750, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34989574

RESUMO

Over the last three decades, research on redox-active monolayers has consolidated their importance as advanced functional material. For widespread monolayer systems, such as alkanethiols on gold, non-ideal multiple peaks in cyclic voltammetry are generally taken as indication of heterogeneous intermolecular interactions─namely, disorder in the monolayer. Our findings show that, contrary to metals, peak multiplicity of silicon photoelectrodes is not diagnostic of heterogeneous intermolecular microenvironments but is more likely caused by photocurrent being heterogeneous across the monolayer. This work is an important step toward understanding the cause of electrochemical non-idealities in semiconductor electrodes so that these can be prevented and the redox behavior of molecular monolayers, as photocatalytic systems, can be optimized.

6.
Langmuir ; 38(18): 5532-5541, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35470670

RESUMO

Owing to its simplicity, selectivity, high yield, and the absence of byproducts, the "click" azide-alkyne reaction is widely used in many areas. The reaction is usually catalyzed by copper(I), which selectively produces the 1,4-disubstituted 1,2,3-triazole regioisomer. Ruthenium-based catalysts were later developed to selectively produce the opposite regioselectivity─the 1,5-disubstituted 1,2,3-triazole isomer. Ruthenium-based catalysis, however, remains only tested for click reactions in solution, and the suitability of ruthenium catalysts for surface-based click reactions remains unknown. Also unknown are the electrical properties of the 1,4- and 1,5-regioisomers, and to measure them, both isomers need to be assembled on the electrode surface. Here, we test whether ruthenium catalysts can be used to catalyze surface azide-alkyne reactions to produce 1,5-disubstituted 1,2,3-triazole, and compare their electrochemical properties, in terms of surface coverages and electron transfer kinetics, to those of the compound formed by copper catalysis, 1,4-disubstituted 1,2,3-triazole isomer. Results show that ruthenium(II) complexes catalyze the click reaction on surfaces yielding the 1,5-disubstituted isomer, but the rate of the reaction is remarkably slower than that of the copper-catalyzed reaction, and this is related to the size of the catalyst involved as an intermediate in the reaction. The electron transfer rate constant (ket) for the ruthenium-catalyzed reaction is 30% of that measured for the copper-catalyzed 1,4-isomer. The lower conductivity of the 1,5-isomer is confirmed by performing nonequilibrium Green's function computations on relevant model systems. These findings demonstrate the feasibility of ruthenium-based catalysis of surface click reactions and point toward an electrical method for detecting the isomers of click reactions.

7.
Nature ; 531(7592): 88-91, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935697

RESUMO

It is often thought that the ability to control reaction rates with an applied electrical potential gradient is unique to redox systems. However, recent theoretical studies suggest that oriented electric fields could affect the outcomes of a range of chemical reactions, regardless of whether a redox system is involved. This possibility arises because many formally covalent species can be stabilized via minor charge-separated resonance contributors. When an applied electric field is aligned in such a way as to electrostatically stabilize one of these minor forms, the degree of resonance increases, resulting in the overall stabilization of the molecule or transition state. This means that it should be possible to manipulate the kinetics and thermodynamics of non-redox processes using an external electric field, as long as the orientation of the approaching reactants with respect to the field stimulus can be controlled. Here, we provide experimental evidence that the formation of carbon-carbon bonds is accelerated by an electric field. We have designed a surface model system to probe the Diels-Alder reaction, and coupled it with a scanning tunnelling microscopy break-junction approach. This technique, performed at the single-molecule level, is perfectly suited to deliver an electric-field stimulus across approaching reactants. We find a fivefold increase in the frequency of formation of single-molecule junctions, resulting from the reaction that occurs when the electric field is present and aligned so as to favour electron flow from the dienophile to the diene. Our results are qualitatively consistent with those predicted by quantum-chemical calculations in a theoretical model of this system, and herald a new approach to chemical catalysis.

8.
Angew Chem Int Ed Engl ; 61(46): e202209670, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36169114

RESUMO

Luciferin is one of Nature's most widespread luminophores, and enzymes that catalyze luciferin luminescence are the basis of successful commercial "glow" assays for gene expression and metabolic ATP formation. Herein we report an electrochemical method to promote firefly's luciferin luminescence in the absence of its natural biocatalyst-luciferase. We have gained experimental and computational insights on the mechanism of the enzyme-free luciferin electrochemiluminescence, demonstrated its spectral tuning from green to red by means of electrolyte engineering, proven that the colour change does not require, as still debated, a keto/enol isomerization of the light emitter, and gained evidence of the electrostatic-assisted stabilization of the charge-transfer excited state by double layer electric fields. Luciferin's electrochemiluminescence, as well as the in situ generation of fluorescent oxyluciferin, are applied towards an optical measurement of diffusion coefficients.


Assuntos
Luciferina de Vaga-Lumes , Luciferinas , Luciferases/metabolismo , Luciferina de Vaga-Lumes/metabolismo , Luminescência , Catálise , Medições Luminescentes
9.
J Am Chem Soc ; 143(3): 1267-1272, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33373229

RESUMO

The electrochemical reduction of bulk silica, due to its high electrical resistance, is of limited viability, namely, requiring temperatures in excess of 850 °C. By means of electrochemical and electrical measurements in atomic force microscopy, we demonstrate that at a buried interface, where silica has grown on highly conductive Si(110) crystal facets, the silica-silicon conversion becomes reversible at room temperature and accessible within a narrow potential window. We conclude that parasitic signals commonly observed in voltammograms of silicon electrodes originate from silica-silicon redox chemistry. While these findings do not remove the requirement of high temperature toward bulk silica electrochemical reduction, they redefine for silicon the potential window free from parasitic signals and, as such, significantly restrict the conditions where electroanalytical methods can be applied to the study of silicon surface reactivity.

10.
J Am Chem Soc ; 143(42): 17431-17440, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34657417

RESUMO

Herein we demonstrate that ionic liquids can form long-lived double layers, generating electric fields detectable by straightforward open circuit potential (OCP) measurements. In imidazolium-based ionic liquids an external negative voltage pulse leads to an exceedingly stable near-surface dipolar layer, whose field manifests as long-lived (∼1-100 h) discrete plateaus in OCP versus time traces. These plateaus occur within an ionic liquid-specific and sharp potential window, defining a simple experimental method to probe the onset of interfacial ordering phenomena, such as overscreening and crowding. Molecular dynamics modeling reveals that the OCP arises from the alignment of the individual ion dipoles to the external electric field pulse, with the magnitude of the resulting OCP correlating with the product of the projected dipole moment of the cation and the ratio between the cation diffusion coefficient and its volume. Our findings also reveal that a stable overscreened structure is more likely to form if the interface is first forced through crowding, possibly accounting for the scattered literature data on relaxation kinetics of near-surface structures in ionic liquids.

11.
Langmuir ; 36(49): 14999-15009, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33271017

RESUMO

Thiols and disulfide contacts have been, for decades, key for connecting organic molecules to surfaces and nanoclusters as they form self-assembled monolayers (SAMs) on metals such as gold (Au) under mild conditions. In contrast, they have not been similarly deployed on Si owing to the harsh conditions required for monolayer formation. Here, we show that SAMs can be simply formed by dipping Si-H surfaces into dilute solutions of organic molecules or proteins comprising disulfide bonds. We demonstrate that S-S bonds can be spontaneously reduced on Si-H, forming covalent Si-S bonds in the presence of traces of water, and that this grafting can be catalyzed by electrochemical potential. Cyclic disulfide can be spontaneously reduced to form complete monolayers in 1 h, and the reduction can be catalyzed electrochemically to form full surface coverages within 15 min. In contrast, the kinetics of SAM formation of the cyclic disulfide molecule on Au was found to be three-fold slower than that on Si. It is also demonstrated that dilute thiol solutions can form monolayers on Si-H following oxidation to disulfides under ambient conditions; the supply of too much oxygen, however, inhibits SAM formation. The electron transfer kinetics of the Si-S-enabled SAMs on Si-H is comparable to that on Au, suggesting that Si-S contacts are electrically transmissive. We further demonstrate the prospect of this spontaneous disulfide reduction by forming a monolayer of protein azurin on a Si-H surface within 1 h. The direct reduction of disulfides on Si electrodes presents new capabilities for a range of fields, including molecular electronics, for which highly conducting SAM-electrode contacts are necessary and for emerging fields such as biomolecular electronics as disulfide linkages could be exploited to wire proteins between Si electrodes, within the context of the current Si-based technologies.

12.
Phys Chem Chem Phys ; 22(20): 11671-11677, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32406440

RESUMO

Here, we investigate the development and relaxation of static charges on the surface of plastic materials that are first brought in contact, and then macroscopically separated. Experimentalists dealing with the static electrification of insulators are aware of difficulties predictably attaining, and precisely reproducing, a given charging magnitude. Here we have observed for the first time that in homo-systems (e.g. PTFE rubbed against PTFE) charge densities reach the maximum value after a material-specific contact time. Attempts to charge a sample beyond its peak value leads to a progressive drop in charge. We propose this drop to result both from the electrostatically driven segregation of polymer ionic fragments, as well as from the discharge of unstable fragments by dielectric breakdown when a sufficiently high surface charge density is reached. We therefore highlight the general existence of two branches in the charging versus charging time curve: the assumption of a monotonous charging slope holds only left or right of the charging maxima and to achieve a specific charge density, care has to be taken to remain within one branch. Differences between materials in the tribocharging peak time are shown to reflect difference in material transfer rates and water adsorption, rather than differences in electronic factors such as the relative stability of cationic and anionic fragments.

13.
J Am Chem Soc ; 141(1): 240-250, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30516985

RESUMO

This paper reports highly efficient coherent tunneling in single-molecule wires of oligo-ferrocenes with one to three Fc units. The Fc units were directly coupled to the electrodes, i.e., without chemical anchoring groups between the Fc units and the terminal electrodes. We found that a single Fc unit readily interacts with the metal electrodes of an STM break junction (STM = scanning tunneling microscope) and that the zero-voltage bias conductance of an individual Fc molecular junction increased 5-fold, up to 80% of the conductance quantum G0 (77.4 µS), when the length of the molecular wire was increased from one to three connected Fc units. Our compendium of experimental evidence combined with nonequilibrium Green function calculations contemplate a plausible scenario to explain the exceedingly high measured conductance based on the electrode/molecule contact via multiple Fc units. The oligo-Fc backbone is initially connected through all Fc units, and, as one of the junction electrodes is pulled away, each Fc unit is sequentially disconnected from one of the junction terminals, resulting in several distinct conductance features proportional to the number of Fc units in the backbone. The conductance values are independent of the applied temperature (-10 to 85 °C), which indicates that the mechanism of charge transport is coherent tunneling for all measured configurations. These measurements show the direct Fc-electrode coupling provides highly efficient molecular conduits with very low barrier for electron tunneling and whose conductivity can be modulated near the ballistic regime through the number of Fc units able to bridge and the energy position of the frontier molecular orbital.

14.
J Am Chem Soc ; 141(37): 14788-14797, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31455076

RESUMO

Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on ⟨111⟩ than on ⟨100⟩, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal-single-molecule-semiconductor junctions between silicon and gold source and drain, electrodes. Au-C and Si-C molecule-electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s, which is 30-400% higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current-voltage properties during the lifetime of the molecular junction. We show that current rectification, which is intrinsic to metal-semiconductor junctions, can be controlled when a single-molecule bridges the gap in the junction. The system changes from being a current rectifier in the absence of a molecular bridge to an ohmic contact when a single molecule is covalently bonded to both silicon and gold electrodes. This study paves the way for the merging of the fields of single-molecule and silicon electronics.

15.
J Am Chem Soc ; 141(14): 5863-5870, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30884944

RESUMO

Electrically insulating objects gain a net electrical charge when brought in and out of contact. This phenomenon-triboelectricity-involves the flow of charged species, but conclusively establishing their nature has proven extremely difficult. Here, we demonstrate an almost linear relationship between a plastic sample's net negative charge and the amount of solution metal ions discharged to metallic particles with a coefficient of proportionality linked to its electron affinity (stability of anionic fragments). The maximum magnitude of reductive redox work is also material dependent: metallic particles grow to a larger extent over charged dielectrics that yield stable cationic fragments (smaller ionization energy). Importantly, the extent to which the sample can act as electron source greatly exceeds the net charging measured in a Faraday pail/electrometer set up, which brings direct evidence of triboeletricity being a mosaic of positive and negative charges rather than a homogeneous ensemble and defines for the first time their quantitative scope in electrochemistry.

16.
Chem Soc Rev ; 47(14): 5146-5164, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29947390

RESUMO

Static electricity is central to many day-to-day practical technologies, from separation methods in the recycling of plastics to transfer inks in photocopying, but the exploration of how electrostatics affects chemical bonding is still in its infancy. As shown in the Companion Tutorial, the presence of an appropriately-oriented electric field can enhance the resonance stabilization of transition states by lowering the energy of ionic contributors, and the effect that follows on reaction barriers can be dramatic. However, the electrostatic effects are strongly directional and harnessing them in practical experiments has proven elusive until recently. This tutorial outlines some of the experimental platforms through which we have sought to translate abstract theoretical concepts of electrostatic catalysis into practical chemical technologies. We move step-wise from the nano to the macro, using recent examples drawn from single-molecule STM experiments, surface chemistry and pH-switches in solution chemistry. The experiments discussed in the tutorial will educate the reader in some of the viable solutions to gain control of the orientation of reagents in that field; from pH-switchable bond-dissociations using charged functional groups to the use of surface chemistry and surface-probe techniques. All of these recent works provide proof-of-concept of electrostatic catalysis for specific sets of chemical reactions. They overturn the long-held assumption that static electricity can only affect rates and equilibrium position of redox reactions, but most importantly, they provide glimpses of the wide-ranging potential of external electric fields for controlling chemical reactivity and selectivity.

17.
J Am Chem Soc ; 140(2): 766-774, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29258306

RESUMO

Alkoxyamines are heat-labile molecules, widely used as an in situ source of nitroxides in polymer and materials sciences. Here we show that the one-electron oxidation of an alkoxyamine leads to a cation radical intermediate that even at room temperature rapidly fragments, releasing a nitroxide and carbocation. Digital simulations of experimental voltammetry and current-time transients suggest that the unimolecular decomposition which yields the "unmasked" nitroxide (TEMPO) is exceedingly rapid and irreversible. High-level quantum computations indicate that the collapse of the alkoxyamine cation radical is likely to yield a neutral nitroxide radical and a secondary phenylethyl cation. However, this fragmentation is predicted to be slow and energetically very unfavorable. To attain qualitative agreement between the experimental kinetics and computational modeling for this fragmentation step, the explicit electrostatic environment within the double layer must be accounted for. Single-molecule break-junction experiments in a scanning tunneling microscope using solvent of low dielectric (STM-BJ technique) corroborate the role played by electrostatic forces on the lysis of the alkoxyamine C-ON bond. This work highlights the electrostatic aspects played by charged species in a chemical step that follows an electrochemical reaction, defines the magnitude of this catalytic effect by looking at an independent electrical technique in non-electrolyte systems (STM-BJ), and suggests a redox on/off switch to guide the cleavage of alkoxyamines at an electrified interface.

18.
J Am Chem Soc ; 138(30): 9611-9, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27373457

RESUMO

This work demonstrates the effect of electrostatic interactions on the electroactivity of a persistent organic free radical. This was achieved by chemisorption of molecules of 4-azido-2,2,6,6-tetramethyl-1-piperdinyloxy (4-azido-TEMPO) onto monolayer-modified Si(100) electrodes using a two-step chemical procedure to preserve the open-shell state and hence the electroactivity of the nitroxide radical. Kinetic and thermodynamic parameters for the surface electrochemical reaction are investigated experimentally and analyzed with the aid of electrochemical digital simulations and quantum-chemical calculations of a theoretical model of the tethered TEMPO system. Interactions between the electrolyte anions and the TEMPO grafted on highly doped, i.e., metallic, electrodes can be tuned to predictably manipulate the oxidizing power of surface nitroxide/oxoammonium redox couple, hence showing the practical importance of the electrostatics on the electrolyte side of the radical monolayer. Conversely, for monolayers prepared on the poorly doped electrodes, the electrostatic interactions between the tethered TEMPO units and the semiconductor-side, i.e., space-charge, become dominant and result in drastic kinetic changes to the electroactivity of the radical monolayer as well as electrochemical nonidealities that can be explained as an increase in the self-interaction "a" parameter that leads to the Frumkin isotherm.

19.
Langmuir ; 32(10): 2509-17, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26901641

RESUMO

Controlling the composition of an interface is very important in tuning the chemical and physical properties of a surface in many applications including biosensors, biomaterials, and chemical catalysis. Frequently, this requires one molecular component to a minor component in a mixed layer. Such subtle control of composition has been difficult to achieve using aryldiazonium salts. Herein, aryldiazonium salts of carboxyphenyl (CP) and phenylphosphorylcholine (PPC), generated in situ from their corresponding anilines, are electrografted to form molecular platform that are available for further functionalization. These two components are chosen because CP provides a convenient functionality for further coupling of biorecognition species while PPC offers resistance to nonspecific adsorption of proteins to the surface. Mixed layers of CP and PPC were prepared by grafting them either simultaneously or consecutively. The latter strategy allows an interface to be developed in a controlled way where one component is at levels of less than 1% of the total layer.

20.
Acc Chem Res ; 47(2): 385-95, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24160945

RESUMO

Electron transfer (ET) reactions through molecules attached to surfaces, whether they are through single molecules or ensembles, are the subject of much research in molecular electronics, bioelectronics, and electrochemistry. Therefore, understanding the factors that govern ET is of high importance. The availability of rigid hydrocarbon molecular scaffolds possessing well-defined configurations and lengths that can be systematically varied is crucial to the development of such devices. In this Account, we demonstrate how suitably functionalized norbornylogous (NB) systems can provide important insights into interfacial ET processes and electrical conduction through single molecules. To this end, we created NB bridges with vic-trans-bismethylenethiol groups at one end so they can assemble on gold electrodes and redox species at the distal ends. With these in hand, we then formed mixed self-assembled monolayers (SAMs) containing a small proportion of the NB bridges diluted with alkanethiols. As such, the NB bridges served as molecular rulers for probing the environment above the surface defined by the diluent species. Using this construct, we were able to measure the interfacial potential distribution above the diluent surface, and track how variation in the ionic distribution in the electrical double layer impacts ET kinetics. Using the same construct, but with a redox molecule that remains neutral in both oxidized and reduced states, we could explore the impact of the chemical environment near a surface on ET processes. These results are important, because with conventional surface constructs, ET occurs across this interfacial region. Such knowledge is therefore relevant to the design of molecular systems at surfaces involving ET. With a second family of molecules, we investigated aspects of single-molecule electrical conduction using NB bridges bearing vic-trans-bismethylenethiol groups at both ends of the bridge. This gave us insights into distance-dependent electron transport through single molecules and introduced a method of boosting the conductance of saturated molecules by incorporating aromatic moieties in their backbone. These partially conjugated NB molecules represent a new class of molecular wires with far greater stability than conventional completely conjugated molecular wires. Of particular note was our demonstration of a single molecule switch, using a NB bridge containing an embedded anthraquinone redox group, the switching mechanism being via electrochemically controlled quantum interference.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa