Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(23): 4685-4693, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38814588

RESUMO

Herein, we have used gas-phase electronic and vibrational spectroscopic techniques for the first time to study the N···C═O n → π* interaction in ethyl 2-(2-(dimethylamino) phenyl) acetate (NMe2-Ph-EA). We have measured the electronic spectra of NMe2-Ph-EA in the mass channels of its two distinct fragments of m/z = 15 and 192 using a resonant two-photon ionization technique as there was extensive photofragmentation of NMe2-Ph-EA. Identical electronic spectra obtained in the mass channels of both fragments confirm the dissociation of NMe2-Ph-EA in the ionic state, and hence, the electronic spectrum of the fragment represents that of NMe2-Ph-EA only. UV-UV hole-burning spectroscopy proved the presence of a single conformer of NMe2-Ph-EA in the experiment. Detailed quantum chemistry calculations reveal the existence of a N···C═O n → π* interaction in all six low-energy conformers of NMe2-Ph-EA. A comparison of the IR spectrum of NMe2-Ph-EA acquired from the gas-phase experiment with those obtained from theoretical calculations indicates that the experimentally observed conformer has a N···C═O n → π* interaction. The present finding might be further valuable in drug design and their recognition based on the N···C═O n → π* interaction.

2.
J Chem Phys ; 160(22)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38856058

RESUMO

Spectroscopic exploration of sulfur-centered hydrogen bonding involving a thiol group (S-H) as the hydrogen bond donor is scarce in the literature. Herein, we have investigated 1:1 complexes of 2-fluorothiophenol (2-FTP) with methanol (MeOH) and ethanol (EtOH) in the gas phase to examine the physical characteristics and strength of the S-H⋯O hydrogen bond. Structures, conformations, and the strength of the S-H⋯O interaction are investigated by measuring the electronic and Infrared (IR) spectra of the two complexes employing resonant two-photon ionization, UV-UV hole-burning, and IR-UV double resonance spectroscopic techniques combined with quantum chemical calculations. Three conformers of 2-FTP⋯MeOH and two conformers of 2-FTP⋯EtOH have been detected in the experiment. A comparison of the IR spectra obtained from the experiment with those of the low-energy conformers of 2-FTP⋯MeOH and 2-FTP⋯EtOH predicted from the theory confirms that all the observed conformers of the two complexes are primarily S-H⋯O hydrogen bonded. The IR red-shifts found in the S-H stretching frequencies in 2-FTP⋯MeOH and 2-FTP⋯EtOH concerning that in 2-FTP are ∼76 and ∼88 cm-1, respectively, which are much larger than that was reported earlier in the 2-FTP⋯H2O complex (30 cm-1). The strength and physical nature of different noncovalent interactions, including the S-H⋯O hydrogen bond existing in the complexes, are further analyzed using natural bond orbital analysis, quantum theory of atoms in molecules, and localized molecular orbital-energy decomposition analysis. The current investigation reveals that the S-H⋯O hydrogen bond can be strengthened by judicial choices of the hydrogen bond acceptors of higher proton affinities.

3.
J Phys Chem A ; 127(29): 6081-6090, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37463490

RESUMO

n → π* interaction is analogous to the hydrogen bond in terms of the delocalization of the electron density between the two orbitals. Studies on the intermolecular complexes stabilized by the n → π* interaction are scarce in the literature. Herein, we have studied intermolecular N···C═O n → π* interactions in the complexes of p-substituted pyridines (p-R-Py) with formaldehyde (HCHO), formyl chloride (HCOCl), and acetaldehyde (CH3CHO) using quantum chemistry calculations. We have shown that the strength of the n → π* interaction can be modulated by varying the electronic substituents at the donor and acceptor sites in the complexes. Variation of the substituents at the para position of the pyridine ring from the electron-withdrawing groups (EWGs) to the electron-donating groups (EDGs) results in a systematic increase in the strength of the n → π* interaction. The strength of this interaction is also modulated by tuning the electron density toward the carbonyl bond by substituting the hydrogen atom of HCHO with the methyl and chloro groups. The modulation of this interaction due to the electronic substitutions at the n → π* donor and acceptor sites in the complexes is monitored by probing the relevant geometrical parameters, binding energies, C═O frequency redshift, NBO energies, and electron density for this interaction derived from QTAIM and NCI index analyses. Energy decomposition analysis reveals that the electrostatic interaction dominates the binding energies of these complexes, while the charge transfer interaction, which is representative of the n → π* interaction, also has a significant contribution to these.

4.
J Phys Chem A ; 127(15): 3339-3346, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37036493

RESUMO

n→π* non-covalent interaction (NCI) and hydrogen bond have similarity in terms of delocalization of the electron density between the two orbitals involved in the interaction. Hydrogen bond (X-H···Y) involves delocalization of the lone pair electrons (n) on the Y atom into the σ* orbital of the X-H bond. In contrast, the n→π* interaction deals with delocalizing the lone pair electrons (n) on the N, O, or S atom into the π* orbital of a C═O group or aromatic ring. Herein, we have shown a resemblance of this weak n→π* interaction with the relatively stronger hydrogen bond in terms of folding the side chains in flexible molecules. This work reports the study of folding of the flexible side-chain in 3-[2-(dimethylamino) phenyl] propanal (DMAPhP) through a N···C═O n→π* interaction using various computational approaches such as NBO, QTAIM, and NCI analyses. The folding of the molecule by the n→π* interaction observed in this study is found to be similar to that present in the secondary structures of peptides or proteins through hydrogen bonding interactions. Interestingly, the stabilization of the global minimum conformer of DMAPhP by the n→π* interaction demonstrates the importance of this NCI in providing conformational preferences in molecular systems. Another important finding of this study is that the theoretical redshift obtained in the C═O stretching frequency of the most stable conformer of the DMAPhP is contributed mostly by the n→π* interaction as the C═O group is not involved in hyperconjugation with any neighboring heteroatom, which is a common phenomenon in any ester or amide. We have also demonstrated here that the strength of the intramolecular n→π* interaction can be modulated by varying the electronic substituents at the para position of the donor group involved in the interaction.

5.
Chemphyschem ; 23(24): e202200330, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35984348

RESUMO

Herein, we have investigated the structure of phenyl formate⋅⋅⋅water (PhOF⋅⋅⋅H2 O) dimer and various non-covalent interactions present there using gas-phase laser spectroscopy and microwave spectroscopy combined with quantum chemistry calculations. Two conformers of PhOF⋅⋅⋅H2 O (C1 and T1), built on the two cis/trans conformers of the bare molecule, have been observed in the experiment. In cis-PhOF, there is an nCO → π A r * ${{{\rm \pi }}_{{\rm A}{\rm r}}^{{\rm {^\ast}}}}$ interaction between the lone-pair orbital of the carbonyl oxygen atom and the π* orbital of the phenyl ring, which persists in the monohydrated C1 conformer of PhOF⋅⋅⋅H2 O according to the NBO and NCI analyses. On the other hand, this interaction is absent in the trans-PhOF conformer as the C=O group is away from the phenyl ring. The C1 conformer is primarily stabilized by an interplay between O-H⋅⋅⋅O=C hydrogen bond and O-H⋅⋅⋅π interactions, while the stability of the T1 conformer is primarily governed by the O-H⋅⋅⋅O=C hydrogen bond. The most important finding of the present work is that the conformational preference of the PhOF monomer is retained in its monohydrated complex.


Assuntos
Formiatos , Micro-Ondas , Análise Espectral , Ligação de Hidrogênio , Lasers
6.
Phys Chem Chem Phys ; 24(37): 22371-22389, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35822956

RESUMO

Herein, a perspective on the recent understanding of weak n → π* interaction obtained using different experimental and theoretical approaches is presented. This interaction is purely an orbital interaction that involves the delocalization of the lone pair electrons (n) on nitrogen, oxygen, and sulfur to the π* orbitals of CO, CN, and aromatic rings. The n → π* interaction has been found to profoundly influence the stabilization of peptides, proteins, drugs, and various small molecules. Although the functional properties of this non-covalent interaction are still quite underestimated, there are recent demonstrations of applying this interaction to the regulation of synthetic chemistry, catalysis, and molecular recognition. However, the identification and quantification of the n → π* interaction remain a demanding task as this interaction is quite weak and based on the electron delocalization between the two orbitals, while hyperconjugation interactions between neighboring atoms and the group involved in the n → π* interaction are simultaneously present. This review provides a comprehensive picture of understanding the n → π* interaction using different experimental approaches such as the X-ray diffraction technique, and electronic, NMR, microwave, and IR spectroscopy, in addition to quantum chemistry calculations. A detailed understanding of the n → π* interaction can help in modulating the strength of this interaction, which will be further helpful in designing efficient drugs, synthetic peptides, peptidomimetics, etc.


Assuntos
Peptidomiméticos , Medicamentos Sintéticos , Espectroscopia de Ressonância Magnética , Nitrogênio , Oxigênio/química , Peptídeos , Enxofre
7.
Phys Chem Chem Phys ; 24(30): 18408-18418, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35880873

RESUMO

Folding motifs of the secondary structures of peptides and proteins are primarily based on the hydrogen bonding interactions in the backbone as well as the sequence of the amino acid residues present. For instance, the ß-turn structure directed by the Pro-Gly sequence is the key to the ß-hairpin structure of peptides/proteins as well as a selective site for the enzymatic hydroxylation of pro-collagen. Herein, we have investigated the sequence dependent folding motifs of end-protected Gly-Pro and Pro-Gly dipeptides using a combination of gas phase laser spectroscopy, quantum chemistry calculations, solution phase IR and NMR spectroscopy and single crystal X-Ray diffraction (XRD). All three observed conformers of the Gly-Pro peptide in the gas phase have been found to have extended ß-strand or polyproline-II (PP-II) structures with C5-C7 hydrogen bonding interactions, which correlates well with the structure obtained from solution phase spectroscopy and XRD. On the other hand, we have found that the Pro-Gly peptide has a C10/ß-turn structure in the solution phase in contrast to the C7-C7 (i.e. 27-ribbon) structure observed in the gas phase. Although the lowest energy structure in the gas phase is not C10, we find that C7-C7 is an abundantly found structural motif of Pro-Gly containing peptides in the Cambridge Structural Database, indicating that the gas phase conformers are not sampling any unusual forms. We surmise that the role of the solvent could be crucial in dictating the preferential stabilization of the C10 structure in the solution phase. The present investigation provides a comprehensive picture of the folding motifs of the Gly-Pro and Pro-Gly peptides observed in the gas phase and condensed phase weaving a fine interplay of the intrinsic conformational properties, solvation, and crystal packing of the peptides.


Assuntos
Dipeptídeos , Oligopeptídeos , Dipeptídeos/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Oligopeptídeos/química , Peptídeos/química , Conformação Proteica
8.
J Phys Chem A ; 126(49): 9178-9189, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36472854

RESUMO

Study of sulfur (S) centered hydrogen bonding (SCHB) interactions in the literature is mostly limited to the molecular systems where S acts as a hydrogen-bond acceptor. It has been found that this unconventional SCHB is similar in strength to any conventional hydrogen bonding interaction involving electronegative atoms. However, SCHB involving S as a hydrogen-bond donor is not explored much in the literature. Herein, we have studied the nature and strength of an unconventional S-H···O hydrogen bond in a 1:1 complex of 2-fluorothiophenol (2-FTP) and H2O using gas-phase electronic and IR spectroscopy in combination with quantum chemistry calculations. Both of the two conformers of 2-FTP···H2O observed in the experiment are found to be stabilized primarily by S-H···O hydrogen bonding interaction. O-H···S hydrogen-bonded conformers of the complex, which are higher in energy, are not observed in the experiment. There is a nice agreement between the theoretical and experimental IR spectra of the two observed conformers. The observed IR red-shift of 25-30 cm-1 in the S-H stretching frequency of both the conformers of the complex with respect to that of the 2-FTP monomer bespeaks that the S-H···O hydrogen bond present in 2-FTP···H2O is weak in nature. The present work demonstrates that the S-H···O hydrogen bond can have preference over the O-H···S hydrogen bond depending on the pKa values or proton affinities of the hydrogen bonding partners in a complex.

9.
Chemistry ; 26(40): 8703-8708, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32129531

RESUMO

There has been a tremendous evolution for artificial ion transport systems, especially gated synthetic systems, which closely mimic their natural congeners. Herein, we demonstrate a trans-azobenzene-based photoregulatory anionophoric system that transports chloride by forming a sandwich dimeric complex. Further studies confirmed a carrier-mediated chloride-anion antiport mechanism, and the supramolecular interactions involved in chloride recognition within the sandwich complex were revealed from theoretical studies. Reversible trans-cis photoisomerization of the azobenzene was achieved without any significant contribution from the thermal cis→trans isomerization at room temperature. Photoregulatory transport activity across the lipid bilayer membrane inferred an outstanding off-on response of the azobenzene photoswitch.

10.
Inorg Chem ; 59(23): 17811-17821, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33215925

RESUMO

Herein, we report the synthesis of a series of bis(silanechalcogenones) [Ch = Te (2), S (3), or Se (4)] using an N-heterocyclic silylene-based SiCSi pincer ligand (1). 2 is the first example of a bis(silanetellurone) derivative. The bonding patterns of 2-4 were extensively studied by natural bond orbital, quantum theory of atoms in molecules, and noncovalent interaction index analyses, and these exhibit weak C-H···Ch interaction. The analogous reaction of 1 with trimethyl N-oxide produced a novel bis(cyclosiloxane) derivative (5). All of the complexes are duly characterized by single-crystal X-ray diffraction studies, multinuclear nuclear magnetic resonance (1H, 13C, and 29Si) spectroscopy, and high-resolution mass spectrometry.

11.
Phys Chem Chem Phys ; 21(9): 4755-4762, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30758034

RESUMO

Collagen, the most abundant protein in animals, has a unique triple helical structure comprising three parallel left-handed polyproline II (PPII) strands while each of the strands consists of a repeating sequence of X-Y-Gly, where X = proline (Pro) and Y = 4-hydroxyproline (Hyp). Collagen forms a stable triple helix of very long polypeptide strands despite the absence of intra-strand hydrogen bonding in the individual polypeptide chains. It has been reported that non-covalent n→π* interaction plays a significant role in stabilizing the individual polypeptide strands in collagen. However, there is no direct spectroscopic evidence for the presence of this interaction in collagen or its building block. Herein, we have observed for the first time a conformation-specific IR spectroscopic signature for C[double bond, length as m-dash]OC[double bond, length as m-dash]O n→π*-amide interaction in a capped Hyp residue, the most important monomer building block of collagen, using isolated gas phase IR spectroscopy and quantum chemistry calculations. The proof of the existence of this interaction in a model monomer has implications for better understanding of its role not only in structures of collagen but also most of the other proteins and larger peptides.

12.
J Phys Chem A ; 123(28): 5995-6002, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31268326

RESUMO

High-resolution X-ray crystallography and two-dimensional NMR studies demonstrate that water-mediated conventional hydrogen-bonding interactions (N-H···N, O-H···N, etc.) bridging two or more amino acid residues contribute to the stability of proteins and protein-ligand complexes. In this work, we have investigated single water-mediated selenium hydrogen-bonding interactions (unconventional hydrogen-bonding) between amino acid residues in proteins through extensive protein data bank (PDB) analysis coupled with gas-phase spectroscopy and quantum chemical calculation of a model complex consisting of indole, dimethyl selenide, and water. Here, indole and dimethyl selenide represent the amino acid residues tryptophan and selenomethionine, respectively. The current investigation demonstrates that the most stable structure of the model complex observed in the IR spectroscopy mimics single water-mediated selenium hydrogen-bonded structural motifs present in the crystal structures of proteins. The present work establishes that water-mediated Se hydrogen-bonding interactions are ubiquitous in proteins and the number of these interactions observed in the PDB is more than that of direct Se hydrogen-bonds present there.


Assuntos
Proteínas/química , Selênio/química , Água/química , Biologia Computacional , Cristalografia por Raios X , Bases de Dados de Proteínas , Ligação de Hidrogênio , Indóis/química , Ligantes , Modelos Moleculares , Compostos Organosselênicos/química , Teoria Quântica , Selenometionina/química , Espectrofotometria Infravermelho , Triptofano/química
13.
J Chem Phys ; 151(10): 104309, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521069

RESUMO

Specific folded structures of peptides and proteins depend on the sequence of various amino acid residues as well as different types of noncovalent interactions induced by the backbone as well as side-chains of those residues. In general, secondary structures of peptides and proteins are stabilized by C6 (δ-turn), C7 (γ-turn), C10 (ß-turn), C13 (α-turn), and C15 (π-turn) hydrogen-bonded rings formed through inter-residue interactions. However, it has been reported recently that an intraresidue C5 hydrogen-bond, which is relatively weak in strength, can contribute significantly to the stability of peptides and proteins. The C5 hydrogen-bond is mostly present in the ß-sheet structures of peptides and proteins along with other inter-residue noncovalent interactions. In this work, we have studied structures and conformational preferences of a dipeptide Z-Gly-Pro-OH (Z = benzyloxycarbonyl) using mass-selected vibrationally resolved electronic spectroscopy and IR-UV double resonance spectroscopy coupled with quantum chemistry calculations. Two conformers of the peptide are observed in the experiment. One of the conformers has an extended ß-strand type structure stabilized by C5 hydrogen-bonding, while the other one is folded through O-H ⋯ π interaction. The noncovalent interactions present in the two observed structures of the peptide are validated by natural bond orbital and noncovalent interaction calculations.


Assuntos
Dipeptídeos/química , Peptídeos/química , Ligação de Hidrogênio , Dobramento de Proteína , Estrutura Secundária de Proteína
14.
Phys Chem Chem Phys ; 20(27): 18361-18373, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29942975

RESUMO

The competition and cooperation between weak intermolecular interactions are important in determining the conformational preferences of molecules. Understanding the relative strengths of these effects in the context of potential drug candidates is therefore essential. We use a combination of gas-phase spectroscopy and quantum-chemical calculations to elucidate the nature of such interactions for the analgesic salicin [2-(hydroxymethyl)phenyl ß-d-glucopyranoside], an analog of aspirin found in willow bark. Of several possible conformers, only three are observed experimentally, and these are found to correspond with the three lowest energy conformers obtained from density functional theory calculations and simulated Franck-Condon spectra. Natural bond orbital analyses show that these are characterized by a subtle interplay between weak n→π* interaction and conventional strong hydrogen bond, with additional insights into this interaction provided by analysis of quantum theory of atoms in molecules and symmetry-adapted perturbation theory calculations. In contrast, the higher energy conformers, which are not observed experimentally, are mostly stabilized by the hydrogen bond with negligible contribution of n→π* interaction. The n→π* interaction results in a preference for the benzyl alcohol group of salicin to adopt a gauche conformation, a characteristic also found when salicin is bound to the ß-glucosidase enzyme. As such, understanding the interplay between these weak interactions has significance in the rationalization of protein structures.


Assuntos
Analgésicos/química , Álcoois Benzílicos/química , Glucosídeos/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Termodinâmica , beta-Glucosidase/química
15.
Chemphyschem ; 18(7): 828-838, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28124829

RESUMO

π-Hydrogen bonding interactions are ubiquitous in both materials and biology. Despite their relatively weak nature, great progress has been made in their investigation by experimental and theoretical methods, but this becomes significantly more complicated when secondary intermolecular interactions are present. In this study, the effect of successive methyl substitution on the supramolecular structure and interaction energy of indole⋅⋅⋅methylated benzene (ind⋅⋅⋅n-mb, n=1-6) complexes is probed through a combination of supersonic jet experiments and benchmark-quality quantum chemical calculations. It is demonstrated that additional secondary interactions introduce a subtle interplay among electrostatic and dispersion forces, as well as steric repulsion, which fine-tunes the overall structural motif. Resonant two-photon ionization and IR-UV double-resonance spectroscopy techniques are used to probe jet-cooled ind⋅⋅⋅n-mb (n=2, 3, 6) complexes, with redshifting of the N-H IR stretching frequency showing that increasing the degree of methyl substitution increases the strength of the primary N-H⋅⋅⋅π interaction. Ab initio harmonic frequency and binding energy calculations confirm this trend for all six complexes. Electronic spectra of the three dimers are broad and structureless, with quantum chemical calculations revealing that this is likely to be due to multiple tilted conformations of each dimer possessing similar stabilization energies.


Assuntos
Benzeno/química , Teoria Quântica , Ligação de Hidrogênio , Substâncias Macromoleculares/química , Espectrometria de Massas , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Eletricidade Estática
16.
Phys Chem Chem Phys ; 19(35): 24179-24187, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28840208

RESUMO

Subsequent to the recent re-definition of hydrogen bonding by the IUPAC committee, there has been a growing search for finding the presence of this ever interesting non-covalent interaction between a hydrogen atom in an X-H group and any other atom in the periodic table. In recent gas phase experiments, it has been observed that hydrogen bonding interactions involving S and Se are of similar strength to those with an O atom. However, there is no clear explanation for the unusual strength of this interaction in the case of hydrogen bond acceptors which are not conventional electronegative atoms. In this work, we have explored the nature of Se hydrogen bonding by studying indoledimethyl selenide (indmse) and phenoldimethyl selenide (phdmse) complexes using gas phase IR spectroscopy and quantum chemistry calculations. We have found through various energy decomposition analysis (EDA) methods and natural bond orbital (NBO) calculations that, along with electrostatics and polarization, charge transfer interactions are important to understand Se/S hydrogen bonding and there is a delicate balance between the various interactions that plays the crucial role rather than a single component of the interaction energy. An in-depth understanding of this type of non-covalent interaction has immense significance in biology as amino acids containing S and Se are widely present in proteins and hence hydrogen bonding interactions involving S and Se atoms contribute to the folding of proteins.

17.
J Phys Chem A ; 120(31): 6258-69, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27429098

RESUMO

The n → π* interaction is a weak but important noncovalent interaction present in biomolecules and other compounds. Complexes between 7-azaindole and 2,6-difluorinated pyridines were demonstrated earlier to interact not only via an expected strong hydrogen bond but also by a weaker and unexpected n → π* interaction between the nucleophilic nitrogen atom of the 7-azaindole and the electrophilic π-system of the pyridine ring. This system provides a unique and convenient framework upon which to investigate the effect that distal substitution on the 7-azaindole ring has on the strength of the n → π* interaction. Herein we describe our thorough analysis of these effects by applying a variety of diverse methods including NBO, ETS-NOCV, and AIM. Very good agreement in trends was observed among all these diverse methods of analysis. Substitution at the position para to the nucleophilic nitrogen atom of the 7-azaindole ring with electron-donating groups weakened the hydrogen bond interaction with the 2,6-difluoropyridine but enhanced the n → π* interaction. Substitution with electron-withdrawing groups had the opposite effect. In addition, good correlation of the results of the calculations with the substituents' Hammett σp values was observed. Energy decomposition analysis (EDA) corroborated the conclusions derived by the other methods of analysis.

18.
J Chem Phys ; 145(10): 104302, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27634255

RESUMO

In this study, interplay between a strong hydrogen bond and a very weak n → π(*) interaction has been probed through experiment for the first time. We have used resonant 2-photon ionization, Infrared-ultraviolet double resonance spectroscopy, and quantum chemistry calculation to determine the structures of 7-azaindole⋯2,6-difluoropyridine and 7-azaindole⋯2,3,5,6-tetrafluororpyridine complexes, which are stabilized by both hydrogen bonding and n → π(*) interaction. The structures of the complexes studied in the present work have been compared with the double hydrogen bonded (N-H⋯N and C-H⋯N) planar structure of 7-azaindole⋯2-fluoropyridine. It has been found that the strength of the N-H⋯N hydrogen bond in the 7-azaindole⋯2,6-substituted fluoropyridines is affected due to several factors. The main reason for huge reduction in the strength of this N-H⋯N hydrogen bond in these complexes is due to loss of the C-H⋯N hydrogen bond, through substitution of fluorine atoms in 2 and 6 positions, which induces major structural changes by bending the hydrogen bond and introducing the n → π(*) interaction. Effect of fluorination as well as presence of the n → π(*) interaction in these complexes also contributes to the reduction of the strength of the N-H⋯N interaction. Although it is difficult to quantify the role of the n → π(*) interaction to affect the strength of the hydrogen bond, observation of the structures, where a strong hydrogen bond and a weak n → π(*) interaction co-exist, is confirmed.

19.
Angew Chem Int Ed Engl ; 55(27): 7801-5, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-26879929

RESUMO

The n→π* interaction is an extremely weak but very important noncovalent interaction. Although this interaction is widely present in biomolecules and materials, its existence is counterintuitive and so has been debated extensively. Herein, we have reported direct spectroscopic evidence for an n→π* interaction for the first time by probing the carbonyl stretching frequency in phenyl formate using isolated gas-phase IR spectroscopy. This result also demonstrates that the conformational preference for the cis conformer of phenyl formate compared to the trans conformer arises due to the presence of the n→π* interaction in the former. The direct proof reported herein for this controversial but important noncovalent interaction should stimulate further experimental and theoretical investigation on this intriguing research topic.

20.
Phys Chem Chem Phys ; 17(15): 9596-612, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25776003

RESUMO

This perspective describes the current status of a recently discovered non-covalent interaction named as the n → π* interaction, which is very weak and counterintuitive in nature. In this review, we have provided a brief overview of the widespread presence of this interaction in biomacromolecules, small biomolecules and materials, as well as the physical nature of this interaction explored using various experimental and theoretical techniques. It has been found that this interaction is equally important to other non-covalent interactions for the stability and specific structures of biomolecules and materials. An in-depth understanding of this interaction can help in designing more efficient functional materials as well as drugs. The review also provides a future outlook in terms of exploring the detailed functional role of this interaction in biological processes and its direct spectroscopic evidence, which other commonly known non-covalent interactions (conventional hydrogen bonding, π-hydrogen bonding, π-stacking, etc.) have.


Assuntos
Modelos Biológicos , Teoria Quântica , Ligação de Hidrogênio , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa