Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(7): 4510-4524, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38826128

RESUMO

Eggshell membrane-based biomedical applications have recently received great attention for their wound-healing properties. However, there are limited studies on diabetic wound healing. In this regard, we devised four types of composite eggshell membrane mats with nanoscale coatings of bioactive glass/Zn/Co-doped bioactive glass (ESM + BAG, ESM + ZnBAG, ESM + CoBAG, and ESM + ZnCoBAG) as wound-dressing materials for chronic nonhealing diabetic wounds. A detailed study of the physicochemical properties of the mats was conducted. In vitro studies demonstrated cytocompatibility and viability of human dermal fibroblasts on all four types of mats. The cells also attached finely on the mats with the help of cellular extensions, as evident from scanning electron microscopy (SEM) and rhodamine-phalloidin and Hoechst 33342 staining of cellular components. Endowed with bioactive properties, these mats influenced all aspects of full-thickness skin wound healing in diabetic animal model studies. All of the mats, especially the ESM + ZnCoBAG mat, showed the earliest wound closure, effective renewal, and restructuring of the extracellular matrix in terms of an accurate and timely accumulation of collagen, elastin, and reticulin fibers. Hydroxyproline and sulfated glycosaminoglycans were significantly (p < 0.01, p < 0.05) higher in ESM-ZnCoBAG-treated wounds in comparison to ESM-BAG-treated wounds, which suggests that these newly developed mats have potential as an affordable diabetic wound care solution in biomedical research.


Assuntos
Bandagens , Cobalto , Diabetes Mellitus Experimental , Casca de Ovo , Vidro , Cicatrização , Zinco , Animais , Cicatrização/efeitos dos fármacos , Zinco/química , Zinco/farmacologia , Casca de Ovo/química , Diabetes Mellitus Experimental/patologia , Vidro/química , Coelhos , Cobalto/química , Cobalto/farmacologia , Humanos , Pele/patologia , Pele/efeitos dos fármacos , Pele/lesões , Fibroblastos/efeitos dos fármacos
2.
ACS Biomater Sci Eng ; 8(2): 734-752, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35015521

RESUMO

Utilizing bioactive molecules from organic sources in combination with inorganic materials for enhanced tissue regeneration has been a focus of recent scientific advancements. Some recent studies showed the potential of some specialized bioactive glass for healing of soft tissues; the role of Rohu (Labeo rohita) skin-derived collagen, a biopolymer in tissue regeneration and cutaneous healing, is yet to be established. So, we have fabricated four different types of electrospun mats as wound dressing materials/dermal grafts by combining locally sourced fish (Rohu) skin-derived collagen with novel composition of bioactive glass (Fcol/BAG) without and with dopants (3% and 5% Cu and Co, respectively and their binary) aimed at achieving an accelerated wound healing. FTIR and EDX mapping indicated successful integration of collagen and ion-doped bioactive glass in electrospun mats. Microfibers' architectural features and composition provided a cytocompatible and nontoxic environment conducive to adhesion, spreading, and proliferation of human dermal fibroblasts in vitro; in addition, they were hemocompatible with rabbit red blood cells. Better cutaneous wound healing in rabbits was achieved by treating with Fcol/CoBAG and Fcol/CuCoBAG microfibers with respect to improved wound closure, well-formed continuous epidermis, higher wound maturity, and regulated deposition of extracellular matrix components; mature collagen and elastin. Notably, a significantly (p < 0.01) higher density of blood vessels/positive CD 31 staining was observed in fish collagen/ion-doped bioactive glass microfibrous mat treated wounds suggesting efficient neo-vascularization during early stages of the healing process particularly attributable to copper and cobalt ions in the doped bioactive glass. Enhanced vascularizing ability of these engineered dermal composite grafts/wound dressings along with efficient remodeling of cutaneous structural components (ECM) could collectively be ascribed to bioactive properties of bioactive glass and stimulatory roles of copper, cobalt ions, and fish collagen. Our study demonstrates that a fish collagen/Cu and Co-doped bioactive glass microfibrous mat could potentially be used as a low-cost dressing material/dermal graft for augmented cutaneous wound healing.


Assuntos
Colágeno , Vidro , Animais , Bandagens , Colágeno/química , Colágeno/farmacologia , Vidro/química , Íons , Coelhos , Cicatrização
3.
J Mech Behav Biomed Mater ; 134: 105414, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037706

RESUMO

The wounds arising out of underlying hyperglycemic conditions such as diabetic foot ulcers demand a multifunctional tissue regeneration approach owing to several deficiencies in the healing mechanisms. Herein, four different types of electrospun microfibers by combining Rohu fish skin-derived collagen (Fcol) with a bioactive glass (BAG)/ion-doped bioactive glass, namely, Fcol/BAG, Fcol/CuBAG, Fcol/CoBAG, and Fcol/CuCoBAG was developed to accelerate wound healing through stimulation of key events such as angiogenesis and ECM re-construction under diabetic conditions. SEM analysis shows the porous and microfibrous architecture, while the EDX mapping provides evidence of the incorporation of dopants inside various inorganic-organic composite mats. The viscoelastic properties of the microfibrous mats as measured by a nano-DMA test show a higher damping factor non-uniform tan-delta value. The maximum ultimate tensile strength and toughness are recorded for fish collagen with copper doped bioactive glass microfibers while the least values are demonstrated by microfibers with cobalt dopant. In vitro results demonstrate excellent cell-cell and cell-material interactions when human dermal fibroblasts (HDFs) were cultured over the microfibers for 48 h. When these mats were applied over full-thickness diabetic wounds in the rabbit model, early wound healing is attained with Fcol/CuBAG, Fcol/CoBAG, and Fcol/CuCoBAG microfibers. Notably, these microfibers-treated wounds demonstrate a significantly (p < 0.01) higher density of blood vessels by CD-31 immunostaining than control, Duoderm, and Fcol/BAG treated wounds. Mature collagen deposition and excellent ECM remodeling are also evident in wounds treated with fish collagen/ion-doped bioactive glass microfibers suggesting their positive role in diabetic wound healing.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Cicatrização , Animais , Cobalto/química , Colágeno/química , Colágeno/metabolismo , Cobre/química , Complicações do Diabetes , Diabetes Mellitus , Pé Diabético/terapia , Vidro/química , Humanos , Coelhos , Pele/lesões , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa