Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell Mol Neurobiol ; 43(5): 2105-2127, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36201091

RESUMO

Astrocytes have been implicated in the onset and complication of various central nervous system (CNS) injuries and disorders. Uncontrolled astrogliosis (gliosis), while a necessary process for recovery after CNS trauma, also causes impairments in CNS performance and functions. The ability to preserve astrocyte health and better regulate the gliosis process could play a major role in controlling damage in the aftermath of acute insults and during chronic dysfunction. Here in, we demonstrate the ability of dental pulp-derived stem cells (DPSCs) in protecting the health of astrocytes during induced gliosis. First of all, we have characterized the expression of genes in primary astrocytes that are relevant to the pathological conditions of CNS by inducing gliosis. Subsequently, we found that astrocytes co-cultured with DPSCs reduced ROS production, NRF2 and GCLM expressions, mitochondrial membrane potential, and mitochondrial functions compared to the astrocytes that were not co-cultured with DPSCs in gliosis condition. In addition, hyperactive autophagy was also decreased in astrocytes that were co-cultured with DPSCs compared to the astrocytes that were not co-cultured with DPSCs during gliosis. This reversal and mitigation of gliosis in astrocytes were partly due to induction of neurogenesis in DPSCs through enhanced expressions of the neuronal genes like GFAP, NeuN, and Synapsin in DPSCs and by secretion of higher amounts of neurotropic factors, such as BDNF, GDNF, and TIMP-2. Protein-Protein docking analysis suggested that BDNF and GDNF can bind with CSPG4 and block the downstream signaling. Together these findings demonstrate novel functions of DPSCs to preserve astrocyte health during gliosis.


Assuntos
Astrócitos , Gliose , Humanos , Fator Neurotrófico Derivado do Encéfalo , Polpa Dentária , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Células Cultivadas
2.
J Cell Mol Med ; 25(5): 2390-2403, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33511706

RESUMO

Osteoclasts (OCs) differentiate from the monocyte/macrophage lineage, critically regulate bone resorption and remodelling in both homeostasis and pathology. Various immune and non-immune cells help initiating activation of myeloid cells for differentiation, whereas hyper-activation leads to pathogenesis, and mechanisms are yet to be completely understood. Herein, we show the efficacy of dental pulp-derived stem cells (DPSCs) in limiting RAW 264.7 cell differentiation and underlying molecular mechanism, which has the potential for future therapeutic application in bone-related disorders. We found that DPSCs inhibit induced OC differentiation of RAW 264.7 cells when co-cultured in a contact-free system. DPSCs reduced expression of key OC markers, such as NFATc1, cathepsin K, TRAP, RANK and MMP-9 assessed by quantitative RT-PCR, Western blotting and immunofluorescence detection methods. Furthermore, quantitative RT-PCR analysis revealed that DPSCs mediated M2 polarization of RAW 264.7 cells. To define molecular mechanisms, we found that osteoprotegerin (OPG), an OC inhibitory factor, was up-regulated in RAW 264.7 cells in the presence of DPSCs. Moreover, DPSCs also constitutively secrete OPG that contributed in limiting OC differentiation. Finally, the addition of recombinant OPG inhibited OC differentiation in a dose-dependent manner by reducing the expression of OC differentiation markers, NFATc1, cathepsin K, TRAP, RANK and MMP9 in RAW 264.7 cells. RNAKL and M-CSF phosphorylate AKT and activate PI3K-AKT signalling pathway during osteoclast differentiation. We further confirmed that OPG-mediated inhibition of the downstream activation of PI3K-AKT signalling pathway was similar to the DPSC co-culture-mediated inhibition of OC differentiation. This study provides novel evidence of DPSC-mediated inhibition of osteoclastogenesis mechanisms.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Osteoclastos/metabolismo , Osteoprotegerina/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Biomarcadores , Células Cultivadas , Técnicas de Cocultura , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação , Camundongos , Células Mieloides/citologia , Células Mieloides/metabolismo , Osteoclastos/citologia , Células RAW 264.7 , Células-Tronco/citologia , Estresse Fisiológico
3.
J Cell Mol Med ; 23(2): 1386-1395, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30506878

RESUMO

Krüppel-like factor 2 (KLF2) critically regulates activation and function of monocyte, which plays important pathogenic role in progressive joint destruction in rheumatoid arthritis (RA). It is yet to be established the molecular basis of KLF2-mediated regulation of monocytes in RA pathogenesis. Herein, we show that a class of compound, HDAC inhibitors (HDACi) induced KLF2 expression in monocytes both in vitro and in vivo. KLF2 level was also elevated in tissues, such as bone marrow, spleen and thymus in mice after infusion of HDACi. Importantly, HDACi significantly reduced osteoclastic differentiation of monocytes with the up-regulation of KLF2 and concomitant down-regulation of matrixmetalloproteinases both in the expression level as well as in the protein level. In addition, HDACi reduced K/BxN serum-induced arthritic inflammation and joint destruction in mice in a dose-dependent manner. Finally, co-immunoprecipitation and overexpression studies confirmed that KLF2 directly interacts with HDAC4 molecule in cells. These findings provide mechanistic evidence of KLF2-mediated regulation of K/BxN serum-induced arthritic inflammation.


Assuntos
Artrite Experimental/prevenção & controle , Artrite Reumatoide/prevenção & controle , Inibidores de Histona Desacetilases/farmacologia , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Diferenciação Celular , Feminino , Histona Desacetilases/química , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Células RAW 264.7
4.
Int J Mol Sci ; 20(20)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600949

RESUMO

The use of synthetic, natural, or biological agents to minimize the occurrence of cancer in healthy individuals is defined as cancer chemoprevention. Chemopreventive agents inhibit the development of cancer either by impeding DNA damage, which leads to malignancy or by reversing or blocking the division of premalignant cells with DNA damage. The benefit of this approach has been demonstrated in clinical trials of breast, prostate, and colon cancer. The continuous increase in cancer cases, failure of conventional chemotherapies to control cancer, and excessive toxicity of chemotherapies clearly demand an alternative approach. The first trial to show benefit of chemoprevention was undertaken in breast cancer patients with the use of tamoxifen, which demonstrated a significant decrease in invasive breast cancer. The success of using chemopreventive agents for protecting the high risk populations from cancer indicates that the strategy is rational and promising. Dietary components such as capsaicin, cucurbitacin B, isoflavones, catechins, lycopenes, benzyl isothiocyanate, phenethyl isothiocyanate, and piperlongumine have demonstrated inhibitory effects on cancer cells indicating that they may serve as chemopreventive agents. In this review, we have addressed the mechanism of chemopreventive and anticancer effects of several natural agents.


Assuntos
Anticarcinógenos/química , Anticarcinógenos/farmacologia , Quimioprevenção , Neoplasias/prevenção & controle , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Animais , Humanos , Neoplasias/etiologia , Relação Estrutura-Atividade
5.
Mediators Inflamm ; 2017: 5217967, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213192

RESUMO

Cutaneous wound healing is a complex multiple phase process, which overlaps each other, where several growth factors, cytokines, chemokines, and various cells interact in a well-orchestrated manner. However, an imbalance in any of these phases and factors may lead to disruption in harmony of normal wound healing process, resulting in transformation towards chronic nonhealing wounds and abnormal scar formation. Although various therapeutic interventions are available to treat chronic wounds, current wound-care has met with limited success. Progenitor stem cells possess potential therapeutic ability to overcome limitations of the present treatments as it offers accelerated wound repair with tissue regeneration. A substantial number of stem cell therapies for cutaneous wounds are currently under development as a result of encouraging preliminary findings in both preclinical and clinical studies. However, the mechanisms by which these stem cells contribute to the healing process have yet to be elucidated. In this review, we emphasize on the major treatment modalities currently available for the treatment of the wound, role of various interstitial stem cells and exogenous adult stem cells in cutaneous wound healing, and possible mechanisms involved in the healing process.


Assuntos
Regeneração/fisiologia , Cicatrização/fisiologia , Animais , Células Progenitoras Endoteliais/citologia , Folículo Piloso/citologia , Humanos , Oxigenoterapia Hiperbárica , Células-Tronco/citologia
6.
Int J Mol Sci ; 18(11)2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29125549

RESUMO

KLF2 (Kruppel-like factor 2) is a member of the zinc finger transcription factor family, which critically regulates embryonic lung development, function of endothelial cells and maintenance of quiescence in T-cells and monocytes. It is expressed in naïve T-cells and monocytes, however its level of expression decreases during activation and differentiation. KLF2 also plays critical regulatory role in various inflammatory diseases and their pathogenesis. Nuclear factor-kappaB (NF-κB) is an important inducer of inflammation and the inflammation is mediated through the transcription of several proinflammatory cytokines, chemokines and adhesion molecules. So, both transcriptional factors KLF2 and NF-κB are being associated with the similar cellular functions and their maintenance. It was shown that KLF2 regulates most of the NF-κB-mediated activities. In this review, we focused on emphasizing the involvement of KLF2 in health and disease states and how they interact with transcriptional master regulator NF-κB.


Assuntos
Células Endoteliais/imunologia , Inflamação/genética , Fatores de Transcrição Kruppel-Like/genética , Diferenciação Celular/genética , Células Endoteliais/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Fatores de Transcrição Kruppel-Like/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , RNA Interferente Pequeno/genética
7.
Biochim Biophys Acta ; 1842(7): 1071-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24726882

RESUMO

Many ovarian cancer cells express stress-related molecule MICA/B on their surface that is recognized by Vγ2Vδ2 T cells through their NKG2D receptor, which is transmitted to downstream stress-signaling pathway. However, it is yet to be established how Vγ2Vδ2 T cell-mediated recognition of MICA/B signal is transmitted to downstream stress-related molecules. Identifying targeted molecules would be critical to develop a better therapy for ovarian cancer cells. It is well established that ATM/ATR signal transduction pathways, which is modulated by DNA damage, replication stress, and oxidative stress play central role in stress signaling pathway regulating cell cycle checkpoint and apoptosis. We investigated whether ATM/ATR and its down stream molecules affect Vγ2Vδ2 T cell-mediated cytotoxicity. Herein, we show that ATM/ATR pathway is modulated in ovarian cancer cells in the presence of Vγ2Vδ2 T cells. Furthermore, downregulation of ATM pathway resulted downregulation of MICA, and reduced Vγ2Vδ2 T cell-mediated cytotoxicity. Alternately, stimulating ATM pathway enhanced expression of MICA, and sensitized ovarian cancer cells for cytotoxic lysis by Vγ2Vδ2 T cells. We further show that combining currently approved chemotherapeutic drugs, which induced ATM signal transduction, along with Vγ2Vδ2 T cells enhanced cytotoxicity of resistant ovarian cancer cells. These findings indicate that ATM/ATR pathway plays an important role in tumor recognition, and drugs promoting ATM signaling pathway might be considered as a combination therapy together with Vγ2Vδ2 T cells for effectively treating resistant ovarian cancer cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/imunologia , Neoplasias Ovarianas/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
J Cell Mol Med ; 18(4): 685-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24455991

RESUMO

Nanofiber-expanded human umbilical cord blood-derived CD34(+) cell therapy has been shown to have potential applications for peripheral and myocardial ischaemic diseases. However, the efficacies of expanded CD34(+) cell therapy for treating cutaneous wounds and its mechanisms of action have yet to be established. Using an excisional wound model in non-obese diabetic/severe combined immune deficient mice, we show herein that CD34(+) cells accelerate the wound-healing process by enhancing collagen synthesis, and increasing fibroblast cell migration within the wound bed. Concomitantly, reduced levels of matrix metalloproteinase (MMPs) such as MMP1, MMP3, MMP9 and MMP13 were detected in the wound beds of animals treated with CD34(+) cells compared with vehicle-treated controls. CD34(+) cells were found to mediate enhanced migration and proliferation of dermal fibroblast cells in vitro. Moreover, CD34(+) cells secrete collagen in a serum-deprived environment. In mechanistic studies, co-culture of CD34(+) cells with primary skin fibroblasts increased the expression of collagen1A1, a component of type 1 collagen, and decreased the expression of MMP1 in fibroblast cells in the presence of a proteasome inhibitor. Finally, CD34(+) cell-mediated functions were transcriptionally regulated by the c-Jun N-terminal kinases pathway. Collectively, these data provide evidence of therapeutic efficacy and a novel mechanism of nanofiber-expanded CD34(+) cell-mediated accelerated wound healing.


Assuntos
Antígenos CD34/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Sangue Fetal/transplante , Transplante Heterólogo , Animais , Sangue Fetal/citologia , Humanos , Camundongos , Nanofibras/administração & dosagem , Nanofibras/química , Pele/patologia , Técnicas de Fechamento de Ferimentos , Cicatrização
9.
Biomed Pharmacother ; 170: 115971, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039760

RESUMO

Activated microglial cells in the central nervous system (CNS) are the main contributors to neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Inhibiting their activation will help in reducing inflammation and oxidative stress during pathogenesis, potentially limiting the progression of the diseases. The immunomodulation properties of dental pulp-derived stem cells (DPSC) make it a promising therapy for neurodegenerative disorders. This study aims to determine whether secretory factors of DPSC (DPSC℗) inhibit inflammation and proliferation of microglial cells and define the molecular mechanisms. Our quantitative RT-PCR analysis showed that the DPSC℗ reduced the markers of the inflammation and induced anti-inflammatory molecules in microglial cells. DPSC ℗ reduced the intracellular and mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential in microglial cells. In addition, DPSC ℗ decreased the cellular bioenergetics parameters related to oxygen consumption rate (OCAR) and extracellular acidification rate (ECAR). We found that DPSC℗ inhibited microglial cell proliferation by activating a checkpoint molecule, Chk1 leading an arrest at the G1 phase of the cell cycle. To define the mechanism, we performed the western blot analysis and observed that the MAPK P38 pathway was inhibited by DPSC℗. Furthermore, a System biology analysis revealed that the BDNF and GDNF, secretory factors of DPSC, blocked at the phosphorylation site (Tyr 182) of the P38 molecule resulting in the inhibition of downstream signaling of inflammation. These data suggest that the DPSC℗ may be a potential therapeutic agent for neurodegenerative diseases.


Assuntos
Microglia , Doenças Neurodegenerativas , Humanos , Transdução de Sinais , Células-Tronco/metabolismo , Inflamação/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo
10.
ACS Pharmacol Transl Sci ; 7(1): 120-136, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230276

RESUMO

Triple-negative breast cancer (TNBC) poses significant challenges due to its aggressive nature and limited treatment options. In this study, we investigated the impact of urea-based compounds on TNBC cells to uncover their mechanisms of action and therapeutic potential. Notably, polypharmacology urea analogues were found to work via p53-related pathways, and their cytotoxic effects were amplified by the modulation of oxidative phosphorylation pathways in the mitochondria of cancer cells. Specifically, compound 1 demonstrated an uncoupling effect on adenosine triphosphate (ATP) synthesis, leading to a time- and concentration-dependent shift toward glycolysis-based ATP production in MDA-MB-231 cells. At the same time, no significant changes in ATP synthesis were observed in noncancerous MCF10A cells. Moreover, the unique combination of mitochondrial- and p53-related effects leads to a higher cytotoxicity of urea analogues in cancer cells. Notably, the majority of tested clinical agents, but sorafenib, showed significantly higher toxicity in MCF10A cells. To test our hypothesis of sensitizing cancer cells to the treatment via modulation of mitochondrial health, we explored the combinatorial effects of urea-based analogues with established chemotherapeutic agents commonly used in TNBC treatment. Synergistic effects were evident in most tested combinations in TNBC cell lines, while noncancerous MCF10A cells exhibited higher resistance to these combination treatments. The combination of compound 1 with SN38 displayed nearly 60-fold selectivity toward TNBC cells over MCF10A cells. Encouragingly, combinations involving compound 1 restored the sensitivity of TNBC cells to cisplatin. In conclusion, our study provides valuable insights into the mechanisms of action of urea-based compounds in TNBC cells. The observed induction of mitochondrial membrane depolarization, inhibition of superoxide dismutase activity, disruption of ATP synthesis, and cell-line-specific responses contribute to their cytotoxic effects. Additionally, we demonstrated the synergistic potential of compound 1 to enhance the efficacy of existing TNBC treatments. However, the therapeutic potential and underlying molecular mechanisms of urea-based analogues in TNBC cell lines require further exploration.

11.
Int J Cancer ; 133(9): 2133-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23595559

RESUMO

Innate immune system has been known to play an important role in inhibiting the malignant transformation, tumor progression and invasion. However, the mechanistic basis remains ambiguous. Despite polyclonality of human γδ T cells, Vγ2Vδ2 T cell subset was shown to recognize and limit the growth of various tumors at various degrees. The differential recognition of the tumor cells by Vγ2Vδ2 T cells are yet to be defined. Our study reveals that γδ T cells limit in vitro growth of most breast tumor cells, such as SkBr7 (HER2+), MCF7 (ER+) and MDA-MB-231 (ER-) by inhibiting their survival and inducing apoptosis, except BrCa-MZ01 (PR+) cells. To investigate detail mechanisms of antineoplastic effects, we found that cell death was associated with the surface expression levels of MICA/B and ICAM1. Molecular signaling analysis demonstrated that inhibition of cell growth by γδ T cells was associated with the lower expression levels of cell survival-related molecules such as AKT, ERK and concomitant upregulation of apoptosis-related molecules, such as PARP, cleaved caspase 3 and tumor suppressor genes PTEN and P53. However, opposite molecular signaling was observed in the resistant cell line after coculture with γδ T cells. In vivo, antineoplastic effects of γδ T cells were also documented, where tumor growth was inhibited due to the downregulation of survival signals, strong induction of apoptotic molecules, disruption of microvasculature and increased infiltration of tumor associated macrophages. These findings reveal that a complex molecular signaling is involved in γδ T cell-mediated antineoplastic effects.


Assuntos
Apoptose , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Western Blotting , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Ciclo Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Células Tumorais Cultivadas
12.
Stem Cell Rev Rep ; 19(8): 2886-2900, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642902

RESUMO

BACKGROUND: Transplantation of stem cells for treating neurodegenerative disorders is a promising future therapeutic approach. However, the molecular mechanism underlying the neuronal differentiation of dental pulp-derived stem cells (DPSC) remains inadequately explored. The current study aims to define the regulatory role of KLF2 (Kruppel-like factor 2) during the neural differentiation (ND) of DPSC. METHODS: We first investigated the transcriptional and translational expression of KLF2, autophagy, and mitophagy-associated markers during the ND of DPSC by using quantitative RT-PCR and western blot methods. After that, we applied the chemical-mediated loss- and gain-of-function approaches using KLF2 inhibitor, GGPP (geranylgeranyl pyrophosphate), and KLF2 activator, GGTI-298 (geranylgeranyl transferase inhibitor-298) to delineate the role of KLF2 during ND of DPSC. The western blot, qRT-PCR, and immunocytochemistry were performed to determine the molecular changes during ND after KLF2 deficiency and KLF2 sufficiency. We also analyzed the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) using the Seahorse XFe24 analyzer. RESULTS: Our study demonstrated that the expression level of KLF2, autophagy, and mitophagy-associated markers were significantly elevated during the ND of DPSC. Next, we found that the KLF2 inhibitor, GGPP significantly reduced the ND of DPSC. Inversely, KLF2 overexpression accelerated the molecular phenomenon of DPSC's commitment towards ND, indicating the crucial role of KLF2 in neurogenesis. Moreover, we found that the KLF2 positively regulated autophagy, mitophagy, and the Wnt5a signaling pathway during neurogenesis. Seahorse XFe24 analysis revealed that the ECAR and OCR parameters were significantly increased during ND, and inhibition of KLF2 marginally reversed them towards DPSC's cellular bioenergetics. However, KLF2 overexpression shifted the cellular energy metabolism toward the quiescent stage. CONCLUSION: Collectively, our findings provide the first evidence that the KLF2 critically regulates the neurogenesis of DPSC by inducing autophagy and mitophagy.


Assuntos
Polpa Dentária , Mitofagia , Autofagia , Diferenciação Celular , Células-Tronco , Fatores de Transcrição/metabolismo , Humanos
13.
Dis Res ; 3(2): 74-86, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38213319

RESUMO

Background: Dental pulp-derived stem cells (DPSC) is a promising therapy as they modulate the immune response, so we evaluated the inhibitory effect of DPSC secretome (DPSC℗) on the proliferation and inflammation in human glioblastoma (GBM) cells (U-87 MG) and elucidated the concomitant mechanisms involved. Methods: The U87-MG cells were cultured with DPSC℗ for 24 h and assessed the expression of inflammatory molecules using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), generation of reactive oxygen species (ROS), and mitochondrial functionality using a seahorse flux analyzer. MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay and cell cycle analysis were performed to evaluate the proliferation and cell cycle. Finally, the protein levels were determined by western blot. Results: DPSC℗ reduced the inflammation and proliferation of U-87 MG cells by down-regulating the pro-inflammatory markers and up-regulating anti-inflammatory markers expressions through ROS-mediated signaling. Moreover, DPSC℗ significantly reduced the mitochondrial membrane potential (MMP) in the cells. The cellular bioenergetics revealed that all the parameters of oxygen consumption rate (OCAR) and the extracellular acidification rate (ECAR) were significantly decreased in the GBM cells after the addition of DPSC℗. Additionally, DPSC℗ decreased the GBM cell proliferation by arresting the cell cycle at the G1 phase through activation (phosphorylation) of checkpoint molecule CHK1. Furthermore, mechanistically, we found that the DPSC℗ impedes the phosphorylation of the mitogen-activated protein kinases (P38 MAPK) and protein kinase B (AKT) pathway. Conclusion: Our findings lend the first evidence of the inhibitory effects of DPSC℗ on proliferation and inflammation in GBM cells by altering the P38 MAPK-AKT pathway.

14.
PLoS One ; 18(1): e0279434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662725

RESUMO

Adoption of conservation agriculture (CA) is very slow due to weed infestations. The application of herbicides is the only viable option to deal with problem of weed management to adhere with basic principles of CA. A field experiment was carried out for three years to evaluate the expediency of different herbicides and their sequential applications under CA. In this study, seven treatments comprised of either alone or sequential application of pre-emergence (PE) and post-emergence (PoE) herbicides, hand weeding and weedy check were tested in soybean. Result indicated that sequential application of glyphosate at 1 kg ai ha-1 + pendimethalin at 1 kg ai ha-1as PE followed by PoE application of imazethapyr at 100 g ai ha-1 at 30 days after sowing (DAS) proved to be the best economical option in terms of plant growth parameters, crop biomass, seed yield, weed index and carbon and nutrient recycling. Pearson's correlation coefficients matrix revealed that grain yield was significantly (P<0.0001) related to weed density at harvest (r = -0.84), (WDH) (r = -0.63), weed dry biomass (WDB) (r = -0.52), weed nitrogen (N), phosphorus (P) and potassium (K) uptake (r = -0.56, r = -0.59 and r = -0.66), respectively and weed index (WI) (r = -0.96). The bivariate linear regression study of grain yield on weed control efficiency (WCI) biomass, N, P and K uptake by grain showed a clear significant (P<0.0001) dependence with R2 value of 0.53, 0.99, 0.95 and 0.98, respectively. The fitted stepwise multiple regression model also revealed that N and P uptake in grain, weed density at 20 DAS and K uptake in weed were actual predictor for grain yield. We concluded that, effective and economical weed control under CA in soybean can be achieved through sequential application of glyphosate along with pendimethalin at 1 kg ai ha-1 each PE followed by PoE use of imazethapyr at 100 g ai ha-1 at 30 DAS.


Assuntos
Herbicidas , Glycine max , Controle de Plantas Daninhas , Agricultura , Grão Comestível
15.
Biomedicines ; 10(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009546

RESUMO

This work aimed to validate the potential use of dental pulp-derived stem cells (DPSCs) for the treatment of inflammation by defining their mechanisms of action. We planned to investigate whether priming of DPSC with proinflammatory molecules had any impact on their behavior and function. In the first step of our validation in vitro, we showed that priming of DPSCs with the bioactive agents LPS, TNF-α, or IFN-γ altered DPSCs' immunologic properties by increasing their expression levels of IL-10, HGF, IDO, and IL-4 and by decreasing their mitochondrial functions. Moreover, DPSCs induced accelerated wound healing irrespective of priming, as determined by using a gut epithelial cell line in a scratch wound assay. Wound healing of gut epithelial cells was mediated by regulating the expressions of AKT, NF-κB, and ERK1/2 proteins compared to the control epithelial cells. In addition, primed DPSCs altered monocyte polarization toward an immuno-suppressive phenotype (M2), where monocytes expressed higher levels of IL-4R, IL-6, Arg1, and YM-1 compared to monocytes cultured with control DPSCs. In silico analysis revealed that this was accomplished in part by the interaction between kynurenine and PPARγ, which regulated the expression of M2 differentiation-related genes. Collectively, these data provided evidence that the DPSCs reduced inflammation, induced M2 polarization of myeloid cells, and healed damaged gut epithelial cells through inactivation of inflammation and modulating constitutively active signaling pathways.

16.
Cell Death Dis ; 13(5): 452, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552354

RESUMO

Osteoblast differentiation is critically reduced in various bone-related pathogenesis, including arthritis and osteoporosis. For future development of effective regenerative therapeutics, herein, we reveal the involved molecular mechanisms of a phytoestrogen, ferutinin-induced initiation of osteoblast differentiation from dental pulp-derived stem cell (DPSC). We demonstrate the significantly increased expression level of a transcription factor, Kruppel-like factor 2 (KLF2) along with autophagy-related molecules in DPSCs after induction with ferutinin. The loss-of-function and the gain-of-function approaches of KLF2 confirmed that the ferutinin-induced KLF2 modulated autophagic and OB differentiation-related molecules. Further, knockdown of the autophagic molecule (ATG7 or BECN1) from DPSC resulted not only in a decreased level of KLF2 but also in the reduced levels of OB differentiation-related molecules. Moreover, mitochondrial membrane potential-related molecules were increased and induction of mitophagy was observed in DPSCs after the addition of ferutinin. The reduction of mitochondrial as well as total ROS generations; and induction of intracellular Ca2+ production were also observed in ferutinin-treated DPSCs. To test the mitochondrial respiration in DPSCs, we found that the cells treated with ferutinin showed a reduced extracellular acidification rate (ECAR) than that of their vehicle-treated counterparts. Furthermore, mechanistically, chromatin immunoprecipitation (ChIP) analysis revealed that the addition of ferutinin in DPSCs not only induced the level of KLF2, but also induced the transcriptionally active epigenetic marks (H3K27Ac and H3K4me3) on the promoter region of the autophagic molecule ATG7. These results provide strong evidence that ferutinin stimulates OB differentiation via induction of KLF2-mediated autophagy/mitophagy.


Assuntos
Cicloeptanos , Mitofagia , Autofagia/genética , Benzoatos , Compostos Bicíclicos com Pontes , Diferenciação Celular/genética , Células Cultivadas , Cicloeptanos/farmacologia , Osteoblastos , Sesquiterpenos , Fatores de Transcrição/farmacologia
17.
Cell Death Dis ; 13(10): 908, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307395

RESUMO

A natural plant product, epigallocatechin-3-gallate (EGCG), was evaluated for its effectiveness in the regulation of osteoclastogenesis. We found that EGCG inhibited the osteoclast (OC) differentiation in vitro, and in primary bone marrow cells in a dose-dependent manner. Quantitative RT-PCR studies showed that the EGCG reduced the expression of OC differentiation markers. DCFDA, MitoSOX, and JC-1 staining revealed that the EGCG attenuated the reactive oxygen species (ROS), and mitochondrial membrane potential; and flux analysis corroborated the effect of EGCG. We further found that the EGCG inhibited mRNA and protein expressions of mitophagy-related molecules. We confirmed that the OC differentiation was inhibited by EGCG by modulating mitophagy through AKT and p38MAPK pathways. Furthermore, in silico analysis revealed that the binding of RANK and RANKL was blocked by EGCG. Overall, we defined the mechanisms of osteoclastogenesis during arthritis for developing a new therapy using a natural compound besides the existing therapeutics.


Assuntos
Catequina , Mitofagia , Catequina/farmacologia , Osteogênese , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo
18.
Biomolecules ; 12(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36139058

RESUMO

Polyphenolic compounds are a diverse group of natural compounds that interact with various cellular proteins responsible for cell survival, differentiation, and apoptosis. However, it is yet to be established how these compounds interact in myeloid cells during their differentiation and the molecular and intracellular mechanisms involved. Osteoclasts are multinucleated cells that originate from myeloid cells. They resorb cartilage and bone, maintain bone homeostasis, and can cause pathogenesis. Autophagy is a cellular mechanism that is responsible for the degradation of damaged proteins and organelles within cells and helps maintain intracellular homeostasis. Imbalances in autophagy cause various pathological disorders. The current study investigated the role of several polyphenolic compounds, including tannic acid (TA), gallic acid (GA), and ellagic acid (EA) in the regulation of osteoclast differentiation of myeloid cells. We demonstrated that polyphenolic compounds inhibit osteoclast differentiation in a dose-dependent manner. Quantitative real-time PCR, immunocytochemistry, and western blotting revealed that osteoclast markers, such as NFATc1, Cathepsin K, and TRAP were inhibited after the addition of polyphenolic compounds during osteoclast differentiation. In our investigation into the molecular mechanisms, we found that the addition of polyphenolic compounds reduced the number of autophagic vesicles and the levels of LC3B, BECN1, ATG5, and ATG7 molecules through the inactivation of Akt, thus inhibiting the autophagy process. In addition, we found that by decreasing intracellular calcium and decreasing ROS levels, along with decreasing mitochondrial membrane potential, polyphenolic compounds inhibit osteoclast differentiation. Together, this study provides evidence that polyphenolic compounds inhibit osteoclast differentiation by reducing ROS production, autophagy, intracellular Ca2+ level, and mitochondrial membrane potentials.


Assuntos
Osteoclastos , Ligante RANK , Autofagia , Cálcio/metabolismo , Catepsina K/metabolismo , Diferenciação Celular , Ácido Elágico/metabolismo , Ácido Gálico/metabolismo , Potencial da Membrana Mitocondrial , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Taninos/metabolismo
19.
PLoS One ; 17(12): e0279831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584203

RESUMO

Tillage and crop residue management play an imperative role in soil physico-chemical properties that eventually affects crop productivity. The objective of the study to find out a compatible combination of tillage and crop residue management for achieving sustainable food production by improving soil properties, providing favorable environment to crop plants. Secondly, managing crop residues effectively to reduce environmental pollution arising due to crop residue burning. With this aim, a field experiment was conducted on six years continued running experiment under conservation agricultural practices during rabi season of 2019-20 on chickpea. The experiment was comprised of five tillage operations with or without crop residue in main plot and three levels of nutrients in sub plots laid out in split plot design with three replications. Reduced Tillage with 60cm residue height (RT60) was recorded higher growth and yield attributes over conventional tillage practice that attributed to economic yield enhancement. The percent yield increment under NT and RT with 30 and 60cm height residue retention varied from 6.91% to 9.67% over conventional tillage. Maximum grain (2380 kg ha-1) and biological output (5762 kg ha-1) was recorded under RT60 (T4), which ascribed to higher net return (Rs 60551 ha-1) and benefit-cost ratio (2.97). The augmentation in net monetary benefit among tillage systems was lies between 24.32% to 37.78% over conventional tillage. The seed protein content ranged between 20.38 to 21.69% among the treatments. Moreover, total N uptake was maximum under RT60, while total P and K uptake was higher in No Tillage with 30cm residue height (T1). No-Tillage with 60cm residue height (NT60) recorded relatively higher soil moisture content (SMC) (22.71 and 15.40%). Treatment NT30 accrued relatively higher value of soil bulk density (1.42 Mg m-3) followed by NT60 and RT60 in comparison to conventional tillage (1.34 Mg m-3). In conclusion, NT and RT with 60cm residue height along with STCR (N3) nutrient dose was found effective for sustainable food production.


Assuntos
Cicer , Agricultura , Solo/química , Índia , Nutrientes
20.
Cells ; 11(15)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35954256

RESUMO

Despite advances in diabetic wound care, many amputations are still needed each year due to their diabetic wounds, so a more effective therapy is warranted. Herein, we show that the dental pulp-derived stem cell (DPSC) products are effective in wound healing in diabetic NOD/SCID mice. Our results showed that the topical application of DPSC secretory products accelerated wound closure by inducing faster re-epithelialization, angiogenesis, and recellularization. In addition, the number of neutrophils producing myeloperoxidase, which mediates persisting inflammation, was also reduced. NFκB and its downstream effector molecules like IL-6 cause sustained pro-inflammatory activity and were reduced after the application of DPSC products in the experimental wounds. Moreover, the DPSC products also inhibited the activation of NFκB, and its translocation to the nucleus, by which it initiates the inflammation. Furthermore, the levels of TGF-ß, and IL-10, potent anti-inflammatory molecules, were also increased after the addition of DPSC products. Mechanistically, we showed that this wound-healing process was mediated by the upregulation and activation of Smad 1 and 2 molecules. In sum, we have defined the cellular and molecular mechanisms by which DPSC products accelerated diabetic wound closure, which can be used to treat diabetic wounds in the near future.


Assuntos
Diabetes Mellitus Experimental , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B , Células-Tronco , Cicatrização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa