RESUMO
BACKGROUND: Adipocytes are crucial regulators of cardiovascular health. However, not much is known about gene expression profiles of adipocytes residing in nonfat cardiovascular tissues, their genetic regulation, and contribution to coronary artery disease. Here, we investigated whether and how the gene expression profiles of adipocytes in the subcutaneous adipose tissue differ from adipocytes residing in the heart. METHODS: We used single-nucleus RNA-sequencing data sets of subcutaneous adipose tissue and heart and performed in-depth analysis of tissue-resident adipocytes and their cell-cell interactions. RESULTS: We first discovered tissue-specific features of tissue-resident adipocytes, identified functional pathways involved in their tissue specificity, and found genes with cell type-specific expression enrichment in tissue-resident adipocytes. By following up these results, we discovered the propanoate metabolism pathway as a novel distinct characteristic of the heart-resident adipocytes and found a significant enrichment of coronary artery disease genome-wide association study risk variants among the right atrium-specific adipocyte marker genes. Our cell-cell communication analysis identified 22 specific heart adipocyte-associated ligand-receptor pairs and signaling pathways, including THBS (thrombospondin) and EPHA (ephrin type-A), further supporting the distinct tissue-resident role of heart adipocytes. Our results also suggest chamber-level coordination of heart adipocyte expression profiles as we observed a consistently larger number of adipocyte-associated ligand-receptor interactions and functional pathways in the atriums than ventricles. CONCLUSIONS: Overall, we introduce a new function and genetic link to coronary artery disease for the previously unexplored heart-resident adipocytes.
Assuntos
Doença da Artéria Coronariana , Propionatos , Humanos , Propionatos/metabolismo , RNA , Doença da Artéria Coronariana/metabolismo , Estudo de Associação Genômica Ampla , Ligantes , Adipócitos/metabolismo , Análise de Sequência de RNARESUMO
Hemoglobin E (HbE)/ß-thalassemia is a form of ß-hemoglobinopathy that is well-known for its clinical heterogeneity. Individuals suffering from this condition are often found to exhibit increased fetal hemoglobin (HbF) levels - a factor that may contribute to their reduced blood transfusion requirements. This study hypothesized that the high HbF levels in HbE/ß-thalassemia individuals may be guided by microRNAs and explored their involvement in the disease pathophysiology. The miRNA expression profile of hematopoietic progenitor cells in HbE/ß-thalassemia patients was investigated and compared with that of healthy controls. Using miRNA PCR array experiments, eight miRNAs (hsa-miR-146a-5p, hsa-miR-146b-5p, hsa-miR-148b-3p, hsa-miR-155-5p, hsa-miR-192-5p, hsa-miR-335-5p, hsa-miR-7-5p, hsa-miR-98-5p) were identified to be significantly up-regulated whereas four miRNAs (hsa-let-7a-5p, hsa-miR-320a, hsa-let-7b-5p, hsa-miR-92a-3p) were significantly down-regulated. Target analysis found them to be associated with several biological processes and molecular functions including MAPK and HIF-1 signaling pathways - the pathways known to be associated with HbF upregulation. Results of dysregulated miRNAs further indicated that miR-17/92 cluster might be of critical importance in HbF regulation. The findings of our study thus identify key miRNAs that can be extrinsically manipulated to elevate HbF levels in ß-hemoglobinopathies.
Assuntos
Hemoglobina E/genética , MicroRNAs/genética , Talassemia beta/genética , Células Cultivadas , Regulação para Baixo , Hemoglobina Fetal/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Transcriptoma , Regulação para CimaRESUMO
The B-cell lymphoma/leukemia 11A protein (encoded by BCL11A gene) is a key regulator of fetal-to-adult hemoglobin switching as seen in post-natal life. Although genetic polymorphisms like SNPs in BCL11A gene are expected to affect fetal hemoglobin (HbF) expression levels, yet their implications are poorly studied. This study utilizes a computational approach to identify the deleterious SNPs which may affect the structure and function of BCL11A protein. The study also generated a 3D structure of native and mutants. The analysis identified two SNPs in BCL11A as highly deleterious: N391K and C414S which are expected to affect structure and stability of the protein. According to conservation analysis, both residues N391 and C414 were identified as highly conserved. Additionally, post-translational modification sites were predicted at both sites. Ligand binding sites were also predicted in N391 and C414. Therefore, N391K and C414S in BCL11A can considered as important candidates to mediate HbF variation.
Assuntos
Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sítios de Ligação , Simulação por Computador , Hemoglobina Fetal/análise , Humanos , Ligantes , Modelos Moleculares , Filogenia , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Repressoras/metabolismo , SoftwareRESUMO
Diseases and pathological ailments are known to perplex clinicians and researchers with their varied clinical manifestations. Such variations are mostly attributed to the complex interplays between numerous molecular players and their modifiers. This complexity in turn baffles scientists further to tweak multiple players together when attempting to identify definitive therapeutic interventions. In this pursuit, researchers often tend to ignore one of the commonest known genetic variations - single nucleotide polymorphisms (SNPs) in non-coding genetic regions. In this study, we demonstrate how SNPs in critical genes and their miRNA regulators may play a crucial role in varied clinical manifestations using the beta-thalassemia clinical spectrum and fetal hemoglobin levels (HbF) as an illustration. A methodological approach using freely available bioinformatics tools was able to identify SNPs in pre-miRNA regions, pre-miRNA flanking regions and miRNA binding sites which in turn are expected to alter the translation process and thereby the expression of HbF.
Assuntos
Hemoglobina Fetal/genética , MicroRNAs/genética , Talassemia beta/genética , Ilhas de CpG , Bases de Dados Genéticas , Regulação da Expressão Gênica , Heterogeneidade Genética , Perfil Genético , Humanos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Talassemia beta/metabolismoRESUMO
We describe a prey-predator system incorporating constant prey refuge through provision of alternative food to predators. The proposed model deals with a problem of non-selective harvesting of a prey-predator system in which both the prey and the predator species obey logistic law of growth. The long-run sustainability of an exploited system is discussed through provision of alternative food to predators. We have analyzed the variability of the system in presence of constant prey refuge and examined the stabilizing effect on predator-prey system. The steady states of the system are derived and dynamical behavior of the system is extensively analyzed around steady states. The optimal harvesting policy is formulated and solved with the help of Pontryagin's maximal principle. Our objective is to maximize the monetary social benefit through protecting the predator species from extinction, keeping the ecological balance. Results finally illustrated with the help of numerical examples.
Assuntos
Conservação dos Recursos Naturais , Modelos Teóricos , Comportamento Predatório , AnimaisRESUMO
BACKGROUND: Age and obesity are dominant risk factors for several common cardiometabolic disorders, and both are known to impair adipose tissue function. However, the underlying cellular and genetic factors linking aging and obesity on adipose tissue function have remained elusive. Adipose stem and precursor cells (ASPCs) are an understudied, yet crucial adipose cell type due to their deterministic adipocyte differentiation potential, which impacts the capacity to store fat in a metabolically healthy manner. METHODS: We integrated subcutaneous adipose tissue (SAT) bulk (n=435) and large single-nucleus RNA sequencing (n=105) data with the UK Biobank (UKB) (n=391,701) data to study age-obesity interactions originating from ASPCs by performing cell-type decomposition, differential expression testing, cell-cell communication analyses, and construction of polygenic risk scores for body mass index (BMI). RESULTS: We found that the SAT ASPC proportions significantly decrease with age in an obesity-dependent way consistently in two independent cohorts, both showing that the age dependency of ASPC proportions is abolished by obesity. We further identified 76 genes (72 SAT ASPC marker genes and 4 transcription factors regulating ASPC marker genes) that are differentially expressed by age in SAT and functionally enriched for developmental processes and adipocyte differentiation (i.e., adipogenesis). The 76 age-perturbed ASPC genes include multiple negative regulators of adipogenesis, such as RORA, SMAD3, TWIST2, and ZNF521, form tight clusters of longitudinally co-expressed genes during human adipogenesis, and show age-based differences in cellular interactions between ASPCs and adipose cell types. Finally, our genetic data demonstrate that cis-regional variants of these genes interact with age as predictors of BMI in an obesity-dependent way in the large UKB, while no such gene-age interaction on BMI is observed with non-age-dependent ASPC marker genes, thus independently confirming our cellular ASPC results at the biobank level. CONCLUSIONS: Overall, we discover that obesity prematurely induces a decrease in ASPC proportions and identify 76 developmentally important ASPC genes that implicate altered negative regulation of fat cell differentiation as a mechanism for aging and directly link aging to obesity via significant cellular and genetic interactions.
Assuntos
Tecido Adiposo , Obesidade , Humanos , Diferenciação Celular/genética , Obesidade/genética , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Envelhecimento/genética , Fatores de Transcrição/metabolismoRESUMO
A comprehensive knowledge on systems biology of severe acute respiratory syndrome coronavirus 2 is crucial for differential diagnosis of COVID-19. Interestingly, the radiological and pathological features of COVID-19 mimic that of hypersensitivity pneumonitis (HP), another pulmonary fibrotic phenotype. This motivated us to explore the overlapping pathophysiology of COVID-19 and HP, if any, and using a systems biology approach. Two datasets were obtained from the Gene Expression Omnibus database (GSE147507 and GSE150910) and common differentially expressed genes (DEGs) for both diseases identified. Fourteen common DEGs, significantly altered in both diseases, were found to be implicated in complement activation and growth factor activity. A total of five microRNAs (hsa-miR-1-3p, hsa-miR-20a-5p, hsa-miR-107, hsa-miR-16-5p, and hsa-miR-34b-5p) and five transcription factors (KLF6, ZBTB7A, ELF1, NFIL3, and ZBT33) exhibited highest interaction with these common genes. Next, C3, CFB, MMP-9, and IL1A were identified as common hub genes for both COVID-19 and HP. Finally, these top-ranked genes (hub genes) were evaluated using random forest classifier to discriminate between the disease and control group (coronavirus disease 2019 [COVID-19] vs. controls, and HP vs. controls). This supervised machine learning approach demonstrated 100% and 87.6% accuracy in differentiating COVID-19 from controls, and HP from controls, respectively. These findings provide new molecular leads that inform COVID-19 and HP diagnostics and therapeutics research and innovation.
Assuntos
Alveolite Alérgica Extrínseca , COVID-19 , MicroRNAs , Humanos , COVID-19/genética , Biologia de Sistemas , Linhagem Celular Tumoral , Biologia Computacional , Fatores de Transcrição , Proteínas de Ligação a DNA , MicroRNAs/genética , Aprendizado de MáquinaRESUMO
Obesity-induced adipose tissue dysfunction can cause low-grade inflammation and downstream obesity comorbidities. Although preadipocytes may contribute to this pro-inflammatory environment, the underlying mechanisms are unclear. We used human primary preadipocytes from body mass index (BMI) -discordant monozygotic (MZ) twin pairs to generate epigenetic (ATAC-sequence) and transcriptomic (RNA-sequence) data for testing whether increased BMI alters the subnuclear compartmentalization of open chromatin in the twins' preadipocytes, causing downstream inflammation. Here we show that the co-accessibility of open chromatin, i.e. compartmentalization of chromatin activity, is altered in the higher vs lower BMI MZ siblings for a large subset ( ~ 88.5 Mb) of the active subnuclear compartments. Using the UK Biobank we show that variants within these regions contribute to systemic inflammation through interactions with BMI on C-reactive protein. In summary, open chromatin co-accessibility in human preadipocytes is disrupted among the higher BMI siblings, suggesting a mechanism how obesity may lead to inflammation via gene-environment interactions.
Assuntos
Inflamação , Obesidade , Humanos , Índice de Massa Corporal , Cromatina , Inflamação/genética , Obesidade/metabolismo , Gêmeos MonozigóticosRESUMO
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a fast-growing, underdiagnosed, epidemic. We hypothesise that obesity-related inflammation compromises adipose tissue functions, preventing efficient fat storage, and thus driving ectopic fat accumulation into the liver. METHODS: To identify adipose-based mechanisms and potential serum biomarker candidates (SBCs) for NAFLD, we utilise dual-tissue RNA-sequencing (RNA-seq) data in adipose tissue and liver, paired with histology-based NAFLD diagnosis, from the same individuals in a cohort of obese individuals. We first scan for genes that are differentially expressed (DE) for NAFLD in obese individuals' subcutaneous adipose tissue but not in their liver; encode proteins secreted to serum; and show preferential adipose expression. Then the identified genes are filtered to key adipose-origin NAFLD genes by best subset analysis, knockdown experiments during human preadipocyte differentiation, recombinant protein treatment experiments in human liver HepG2 cells, and genetic analysis. FINDINGS: We discover a set of genes, including 10 SBCs, that may modulate NAFLD pathogenesis by impacting adipose tissue function. Based on best subset analysis, we further follow-up on two SBCs CCDC80 and SOD3 by knockdown in human preadipocytes and subsequent differentiation experiments, which show that they modulate crucial adipogenesis genes, LPL, SREBPF1, and LEP. We also show that treatment of the liver HepG2 cells with the CCDC80 and SOD3 recombinant proteins impacts genes related to steatosis and lipid processing, including PPARA, NFE2L2, and RNF128. Finally, utilizing the adipose NAFLD DE gene cis-regulatory variants associated with serum triglycerides (TGs) in extensive genome-wide association studies (GWASs), we demonstrate a unidirectional effect of serum TGs on NAFLD with Mendelian Randomization (MR) analysis. We also demonstrate that a single SNP regulating one of the SBC genes, rs2845885, produces a significant MR result by itself. This supports the conclusion that genetically regulated adipose expression of the NAFLD DE genes may contribute to NAFLD through changes in serum TG levels. INTERPRETATION: Our results from the dual-tissue transcriptomics screening improve the understanding of obesity-related NAFLD by providing a targeted set of 10 adipose tissue-active genes as new serum biomarker candidates for the currently grossly underdiagnosed fatty liver disease. FUNDING: The work was supported by NIH grants R01HG010505 and R01DK132775. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The KOBS study (J. P.) was supported by the Finnish Diabetes Research Foundation, Kuopio University Hospital Project grant (EVO/VTR grants 2005-2019), and the Academy of Finland grant (Contract no. 138006). This study was funded by the European Research Council under the European Union's Horizon 2020 research and innovation program (Grant No. 802825 to M. U. K.). K. H. P. was funded by the Academy of Finland (grant numbers 272376, 266286, 314383, and 335443), the Finnish Medical Foundation, Gyllenberg Foundation, Novo Nordisk Foundation (grant numbers NNF10OC1013354, NNF17OC0027232, and NNF20OC0060547), Finnish Diabetes Research Foundation, Finnish Foundation for Cardiovascular Research, University of Helsinki, and Helsinki University Hospital and Government Research Funds. I. S. was funded by the Instrumentarium Science Foundation. Personal grants to U. T. A. were received from the Matti and Vappu Maukonen Foundation, Ella och Georg Ehrnrooths Stiftelse and the Finnish Foundation for Cardiovascular Research.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Estudo de Associação Genômica Ampla , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Fígado/metabolismo , Biomarcadores/metabolismoRESUMO
Posterior reversible encephalopathy syndrome (PRES) is a relatively rare neurotoxic disorder. A 56-year-old male underwent elective coronary angiography. A Few hours postprocedure, the patient developed bilateral painless vision loss, headache, vomiting and hypertension and was subsequently diagnosed with PRES. Possible trigger factors could be contrast agent used, or hypertension. Contrast agent-induced PRES in hypertensive patients is benign and reversible, and a high-grade suspicion about this possibility is critical for precise management. Our patient was successfully treated with supportive management and was doing well on follow-up.
Assuntos
Hipertensão , Síndrome da Leucoencefalopatia Posterior , Masculino , Humanos , Pessoa de Meia-Idade , Síndrome da Leucoencefalopatia Posterior/induzido quimicamente , Síndrome da Leucoencefalopatia Posterior/diagnóstico por imagem , Angiografia Coronária/efeitos adversos , Meios de Contraste , Cefaleia/etiologia , Transtornos da Visão , Imageamento por Ressonância MagnéticaRESUMO
Therapeutic induction of fetal hemoglobin (HbF) is one of the most promising approaches to ameliorate the severity of hemoglobinopathies like ß-thalassemia and sickle cell anemia. Although several pharmacological agents have been investigated for HbF induction in adults, the majority of these are associated with significant side-effects. While drug repurposing is known to open new doors for the use of approved drugs in unexplored clinical conditions, the primary challenge lies in identifying such candidates. In this study, we aimed to identify repurposing candidates for HbF induction using a novel in silico approach utilizing microRNA-pathway-drug relationships. A computational drug repurposing strategy identified several unique candidates for HbF induction; among which Curcumin, Ginsenoside, Valproate, and Vorinostat were found to be most suitable for future trials. This study identified new drug repurposing candidates for HbF induction and demonstrates an easily adaptable methodology that can be used for other pathophysiological conditions.
Assuntos
Hemoglobina Fetal/biossíntese , Perfilação da Expressão Gênica/métodos , Hemoglobinopatias/genética , Anemia Falciforme/genética , Simulação por Computador , Reposicionamento de Medicamentos/métodos , Hemoglobinopatias/fisiopatologia , Hemoglobinas/biossíntese , Hemoglobinas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Transcriptoma/genética , Talassemia beta/genéticaRESUMO
Database URL: http://www.mirway.iitkgp.ac.in.