Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Obes (Lond) ; 48(3): 330-338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37993634

RESUMO

BACKGROUND: Obesity is a common disease with a higher prevalence among African Americans. Obesity alters cellular function in many tissues, including skeletal muscle, and is a risk factor for many life-threatening diseases, including cardiovascular disease and diabetes. The similarities and differences in molecular mechanisms that may explain ethnic disparities in obesity between African and European ancestry individuals have not been studied. METHODS: In this study, data from transcriptome-wide analyses on skeletal muscle tissues from well-powered human cohorts were used to compare genes and biological pathways affected by obesity in European and African ancestry populations. Data on obesity-induced differentially expressed transcripts and GWAS-identified SNPs were integrated to prioritize target genes for obesity-associated genetic variants. RESULTS: Linear regression analysis in the FUSION (European, N = 301) and AAGMEx (African American, N = 256) cohorts identified a total of 2569 body mass index (BMI)-associated transcripts (q < 0.05), of which 970 genes (at p < 0.05) are associated in both cohorts, and the majority showed the same direction of effect on BMI. Biological pathway analyses, including over-representation and gene-set enrichment analyses, identified enrichment of protein synthesis pathways (e.g., ribosomal function) and the ceramide signaling pathway in both cohorts among BMI-associated down- and up-regulated transcripts, respectively. A comparison using the IPA-tool suggested the activation of inflammation pathways only in Europeans with obesity. Interestingly, these analyses suggested repression of the mitochondrial oxidative phosphorylation pathway in Europeans but showed its activation in African Americans. Integration of SNP-to-Gene analyses-predicted target genes for obesity-associated genetic variants (GWAS-identified SNPs) and BMI-associated transcripts suggested that these SNPs might cause obesity by altering the expression of 316 critical target genes (e.g., GRB14) in the muscle. CONCLUSIONS: This study provides a replication of obesity-associated transcripts and biological pathways in skeletal muscle across ethnicities, but also identifies obesity-associated processes unique in either African or European ancestry populations.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Humanos , Transcriptoma/genética , Obesidade/genética , Obesidade/epidemiologia , Índice de Massa Corporal , Músculo Esquelético , Polimorfismo de Nucleotídeo Único/genética
2.
Genome Res ; 30(10): 1379-1392, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32967914

RESUMO

Sex differences in adipose tissue distribution and function are associated with sex differences in cardiometabolic disease. While many studies have revealed sex differences in adipocyte cell signaling and physiology, there is a relative dearth of information regarding sex differences in transcript abundance and regulation. We investigated sex differences in subcutaneous adipose tissue transcriptional regulation using omic-scale data from ∼3000 geographically and ethnically diverse human samples. We identified 162 genes with robust sex differences in expression. Differentially expressed genes were implicated in oxidative phosphorylation and adipogenesis. We further determined that sex differences in gene expression levels could be related to sex differences in the genetics of gene expression regulation. Our analyses revealed sex-specific genetic associations, and this finding was replicated in a study of 98 inbred mouse strains. The genes under genetic regulation in human and mouse were enriched for oxidative phosphorylation and adipogenesis. Enrichment analysis showed that the associated genetic loci resided within binding motifs for adipogenic transcription factors (e.g., PPARG and EGR1). We demonstrated that sex differences in gene expression could be influenced by sex differences in genetic regulation for six genes (e.g., FADS1 and MAP1B). These genes exhibited dynamic expression patterns during adipogenesis and robust expression in mature human adipocytes. Our results support a role for adipogenesis-related genes in subcutaneous adipose tissue sex differences in the genetic and environmental regulation of gene expression.


Assuntos
Adipogenia/genética , Tecido Adiposo/metabolismo , Regulação da Expressão Gênica , Caracteres Sexuais , Dessaturase de Ácido Graxo Delta-5 , Feminino , Genótipo , Humanos , Masculino , Fosforilação Oxidativa , Fatores de Transcrição/metabolismo
3.
Physiol Genomics ; 54(6): 206-219, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35467982

RESUMO

Transcriptomic analysis in metabolically active tissues allows a systems genetics approach to identify causal genes and networks involved in metabolic disease. Outbred heterogeneous stock (HS) rats are used for genetic mapping of complex traits, but to-date, a systems genetics analysis of metabolic tissues has not been done. We investigated whether adiposity-associated genes and gene coexpression networks in outbred heterogeneous stock (HS) rats overlap those found in humans. We analyzed RNAseq data from adipose tissue of 415 male HS rats, correlated these transcripts with body weight (BW) and compared transcriptome signatures to two human cohorts: the "African American Genetics of Metabolism and Expression" and "Metabolic Syndrome in Men." We used weighted gene coexpression network analysis to identify adiposity-associated gene networks and mediation analysis to identify genes under genetic control whose expression drives adiposity. We identified 554 orthologous "consensus genes" whose expression correlates with BW in the rat and with body mass index (BMI) in both human cohorts. Consensus genes fell within eight coexpressed networks and were enriched for genes involved in immune system function, cell growth, extracellular matrix organization, and lipid metabolic processes. We identified 19 consensus genes for which genetic variation may influence BW via their expression, including those involved in lipolysis (e.g., Hcar1), inflammation (e.g., Rgs1), adipogenesis (e.g., Tmem120b), or no previously known role in obesity (e.g., St14 and Ms4a6a). Strong concordance between HS rat and human BW/BMI associated transcripts demonstrates translational utility of the rat model, while identification of novel genes expands our knowledge of the genetics underlying obesity.


Assuntos
Redes Reguladoras de Genes , Obesidade , Transcriptoma , Tecido Adiposo/metabolismo , Adiposidade/genética , Animais , Perfilação da Expressão Gênica , Humanos , Masculino , Obesidade/genética , Ratos
4.
Hum Genomics ; 13(1): 21, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092297

RESUMO

BACKGROUND: End-stage kidney disease (ESKD) is a significant public health concern disproportionately affecting African Americans (AAs). Type 2 diabetes (T2D) is the leading cause of ESKD in the USA, and efforts to uncover genetic susceptibility to diabetic kidney disease (DKD) have had limited success. A prior genome-wide association study (GWAS) in AAs with T2D-ESKD was expanded with additional AA cases and controls and genotypes imputed to the higher density 1000 Genomes reference panel. The discovery analysis included 3432 T2D-ESKD cases and 6977 non-diabetic non-nephropathy controls (N = 10,409), followed by a discrimination analysis in 2756 T2D non-nephropathy controls to exclude T2D-associated variants. RESULTS: Six independent variants located in or near RND3/RBM43, SLITRK3, ENPP7, GNG7, and APOL1 achieved genome-wide significant association (P < 5 × 10-8) with T2D-ESKD. Following extension analyses in 1910 non-diabetic ESKD cases and 908 non-diabetic non-nephropathy controls, a meta-analysis of 5342 AA all-cause ESKD cases and 6977 AA non-diabetic non-nephropathy controls revealed an additional novel all-cause ESKD locus at EFNB2 (rs77113398; P = 9.84 × 10-9; OR = 1.94). Exclusion of APOL1 renal-risk genotype carriers identified two additional genome-wide significant T2D-ESKD-associated loci at GRAMD3 and MGAT4C. A second variant at GNG7 (rs373971520; P = 2.17 × 10-8, OR = 1.46) remained associated with all-cause ESKD in the APOL1-negative analysis. CONCLUSIONS: Findings provide further evidence for genetic factors associated with advanced kidney disease in AAs with T2D.

5.
Ophthalmology ; 126(1): 156-170, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361356

RESUMO

PURPOSE: To describe the study protocol and baseline characteristics of the African Descent and Glaucoma Evaluation Study (ADAGES) III. DESIGN: Cross-sectional, case-control study. PARTICIPANTS: Three thousand two hundred sixty-six glaucoma patients and control participants without glaucoma of African or European descent were recruited from 5 study centers in different regions of the United States. METHODS: Individuals of African descent (AD) and European descent (ED) with primary open-angle glaucoma (POAG) and control participants completed a detailed demographic and medical history interview. Standardized height, weight, and blood pressure measurements were obtained. Saliva and blood samples to provide serum, plasma, DNA, and RNA were collected for standardized processing. Visual fields, stereoscopic disc photographs, and details of the ophthalmic examination were obtained and transferred to the University of California, San Diego, Data Coordinating Center for standardized processing and quality review. MAIN OUTCOME MEASURES: Participant gender, age, race, body mass index, blood pressure, history of smoking and alcohol use in POAG patients and control participants were described. Ophthalmic measures included intraocular pressure, visual field mean deviation, central corneal thickness, glaucoma medication use, or past glaucoma surgery. Ocular conditions, including diabetic retinopathy, age-related macular degeneration, and past cataract surgery, were recorded. RESULTS: The 3266 ADAGES III study participants in this report include 2146 AD POAG patients, 695 ED POAG patients, 198 AD control participants, and 227 ED control participants. The AD POAG patients and control participants were significantly younger (both, 67.4 years) than ED POAG patients and control participants (73.4 and 70.2 years, respectively). After adjusting for age, AD POAG patients had different phenotypic characteristics compared with ED POAG patients, including higher intraocular pressure, worse visual acuity and visual field mean deviation, and thinner corneas (all P < 0.001). Family history of glaucoma did not differ between AD and ED POAG patients. CONCLUSIONS: With its large sample size, extensive specimen collection, and deep phenotyping of AD and ED glaucoma patients and control participants from different regions in the United States, the ADAGES III genomics study will address gaps in our knowledge of the genetics of POAG in this high-risk population.


Assuntos
Negro ou Afro-Americano/genética , Glaucoma de Ângulo Aberto/genética , Polimorfismo de Nucleotídeo Único , Idoso , Constituição Corporal , Estudos de Casos e Controles , Estudos Transversais , Feminino , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Genótipo , Glaucoma de Ângulo Aberto/diagnóstico , Humanos , Pressão Intraocular/fisiologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Projetos de Pesquisa , Acuidade Visual/fisiologia , Campos Visuais/fisiologia , População Branca/genética
6.
Ophthalmology ; 126(1): 38-48, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352225

RESUMO

PURPOSE: To find genetic contributions to glaucoma in African Americans. DESIGN: Cross-sectional, case-control study. PARTICIPANTS: One thousand eight hundred seventy-five primary open-angle glaucoma (POAG) patients and 1709 controls, self-identified as being of African descent (AD), from the African Descent and Glaucoma Evaluation Study (ADAGES) III and Wake Forest School of Medicine. METHODS: MegaChip genotypes were imputed to Thousand Genomes data. Association of single nucleotide polymorphisms (SNPs) with POAG and advanced POAG was tested by linear mixed model correcting for relatedness and population stratification. Genetic risk scores were tested by receiver operator characteristic curves (ROC-AUCs). MAIN OUTCOME MEASURES: Primary open-angle glaucoma defined by visual field loss without other nonocular conditions (n = 1875). Advanced POAG was defined by age-based mean deviation of visual field (n = 946). RESULTS: Eighteen million two hundred eighty-one thousand nine hundred twenty SNPs met imputation quality of r2 > 0.7 and minor allele frequency > 0.005. Association of a novel locus, EN04, was observed for advanced POAG (rs185815146 ß, 0.36; standard error, 0.065; P < 3×10-8). For POAG, an AD signal was observed at the 9p21 European descent (ED) POAG signal (rs79721419; P < 6.5×10-5) independent of the previously observed 9p21 ED signal (rs2383204; P < 2.3×10-5) by conditional analyses. An association with POAG in FNDC3B (rs111698934; P < 3.9×10-5) was observed, not in linkage disequilibrium (LD) with the previously reported ED SNP. Additional previously identified loci associated with POAG in persons of AD were: 8q22, AFAP1, and TMC01. An AUC of 0.62 was observed with an unweighted genetic risk score comprising 11 SNPs in candidate genes. Two additional risk scores were studied by using a penalized matrix decomposition with cross-validation; risk scores of 50 and 400 SNPs were identified with ROC of AUC = 0.74 and AUC = 0.94, respectively. CONCLUSIONS: A novel association with advanced POAG in the EN04 locus was identified putatively in persons of AD. In addition to this finding, this genome-wide association study in POAG patients of AD contributes to POAG genetics by identification of novel signals in prior loci (9p21), as well as advancing the fine mapping of regions because of shorter average LD (FNDC3B). Although not useful without confirmation and clinical trials, the use of genetic risk scores demonstrated that considerable AD-specific genetic information remains in these data.


Assuntos
Negro ou Afro-Americano/genética , Glaucoma de Ângulo Aberto/genética , Fosfopiruvato Hidratase/genética , Polimorfismo de Nucleotídeo Único , Idoso , Estudos de Casos e Controles , Estudos Transversais , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Glaucoma de Ângulo Aberto/diagnóstico , Humanos , Pressão Intraocular , Masculino , Pessoa de Meia-Idade , Curva ROC
7.
Hum Genet ; 135(8): 869-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27193597

RESUMO

Relative to European Americans, type 2 diabetes (T2D) is more prevalent in African Americans (AAs). Genetic variation may modulate transcript abundance in insulin-responsive tissues and contribute to risk; yet, published studies identifying expression quantitative trait loci (eQTLs) in African ancestry populations are restricted to blood cells. This study aims to develop a map of genetically regulated transcripts expressed in tissues important for glucose homeostasis in AAs, critical for identifying the genetic etiology of T2D and related traits. Quantitative measures of adipose and muscle gene expression, and genotypic data were integrated in 260 non-diabetic AAs to identify expression regulatory variants. Their roles in genetic susceptibility to T2D, and related metabolic phenotypes, were evaluated by mining GWAS datasets. eQTL analysis identified 1971 and 2078 cis-eGenes in adipose and muscle, respectively. Cis-eQTLs for 885 transcripts including top cis-eGenes CHURC1, USMG5, and ERAP2 were identified in both tissues. 62.1 % of top cis-eSNPs were within ±50 kb of transcription start sites and cis-eGenes were enriched for mitochondrial transcripts. Mining GWAS databases revealed association of cis-eSNPs for more than 50 genes with T2D (e.g. PIK3C2A, RBMS1, UFSP1), gluco-metabolic phenotypes (e.g. INPP5E, SNX17, ERAP2, FN3KRP), and obesity (e.g. POMC, CPEB4). Integration of GWAS meta-analysis data from AA cohorts revealed the most significant association for cis-eSNPs of ATP5SL and MCCC1 genes, with T2D and BMI, respectively. This study developed the first comprehensive map of adipose and muscle tissue eQTLs in AAs (publically accessible at https://mdsetaa.phs.wakehealth.edu ) and identified genetically regulated transcripts for delineating genetic causes of T2D, and related metabolic phenotypes.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Músculos/metabolismo , Obesidade/genética , Locos de Características Quantitativas/genética , Tecido Adiposo/patologia , Adolescente , Adulto , Negro ou Afro-Americano/genética , Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/patologia , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Músculos/patologia , Obesidade/patologia
8.
Am J Hum Genet ; 91(3): 466-77, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22958899

RESUMO

To date, 68 loci have been associated with type 2 diabetes (T2D) or glucose homeostasis traits. We report here the results of experiments aimed at functionally characterizing the SNPs replicated for T2D and glucose traits. We sought to determine whether these loci were associated with transcript levels in adipose, muscle, liver, lymphocytes, and pancreatic ß-cells. We found an excess of trans, rather than cis, associations among these SNPs in comparison to what was expected in adipose and muscle. Among transcripts differentially expressed (FDR < 0.05) between muscle or adipose cells of insulin-sensitive individuals and those of insulin-resistant individuals (matched on BMI), trans-regulated transcripts, in contrast to the cis-regulated ones, were enriched. The paucity of cis associations with transcripts was confirmed in a study of liver transcriptome and was further supported by an analysis of the most detailed transcriptome map of pancreatic ß-cells. Relative to location- and allele-frequency-matched random SNPs, both the 68 loci and top T2D-associated SNPs from two large-scale genome-wide studies were enriched for trans eQTLs in adipose and muscle but not in lymphocytes. Our study suggests that T2D SNPs have broad-reaching and tissue-specific effects that often extend beyond local transcripts and raises the question of whether patterns of cis or trans transcript regulation are a key feature of the architecture of complex traits.


Assuntos
Diabetes Mellitus Tipo 2/genética , Regulação da Expressão Gênica , Locos de Características Quantitativas , Transcriptoma , Tecido Adiposo/metabolismo , Adulto , Feminino , Perfilação da Expressão Gênica/métodos , Glucose/metabolismo , Humanos , Resistência à Insulina/genética , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Músculos/metabolismo , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Adulto Jovem
9.
Nucleic Acids Res ; 40(9): 3800-11, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22238381

RESUMO

Non-canonical guanine quadruplex structures are not only predominant but also conserved among bacterial and mammalian promoters. Moreover recent findings directly implicate quadruplex structures in transcription. These argue for an intrinsic role of the structural motif and thereby posit that single nucleotide polymorphisms (SNP) that compromise the quadruplex architecture could influence function. To test this, we analysed SNPs within quadruplex motifs (Quad-SNP) and gene expression in 270 individuals across four populations (HapMap) representing more than 14,500 genotypes. Findings reveal significant association between quadruplex-SNPs and expression of the corresponding gene in individuals (P < 0.0001). Furthermore, analysis of Quad-SNPs obtained from population-scale sequencing of 1000 human genomes showed relative selection bias against alteration of the structural motif. To directly test the quadruplex-SNP-transcription connection, we constructed a reporter system using the RPS3 promoter-remarkable difference in promoter activity in the 'quadruplex-destabilized' versus 'quadruplex-intact' promoter was noticed. As a further test, we incorporated a quadruplex motif or its disrupted counterpart within a synthetic promoter reporter construct. The quadruplex motif, and not the disrupted-motif, enhanced transcription in human cell lines of different origin. Together, these findings build direct support for quadruplex-mediated transcription and suggest quadruplex-SNPs may play significant role in mechanistically understanding variations in gene expression among individuals.


Assuntos
Quadruplex G , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Transcrição Gênica , Alelos , Animais , Sequência de Bases , Linhagem Celular Tumoral , Evolução Molecular , Humanos , Dados de Sequência Molecular , Pan troglodytes/genética
10.
Aging Cell ; : e14199, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932492

RESUMO

Aging significantly influences cellular activity and metabolism in glucose-responsive tissues, yet a comprehensive evaluation of the impacts of aging and associated cell-type responses has been lacking. This study integrates transcriptomic, methylomic, single-cell RNA sequencing, and metabolomic data to investigate aging-related regulations in adipose and muscle tissues. Through coexpression network analysis of the adipose tissue, we identified aging-associated network modules specific to certain cell types, including adipocytes and immune cells. Aging upregulates the metabolic functions of lysosomes and downregulates the branched-chain amino acids (BCAAs) degradation pathway. Additionally, aging-associated changes in cell proportions, methylation profiles, and single-cell expressions were observed in the adipose. In the muscle tissue, aging was found to repress the metabolic processes of glycolysis and oxidative phosphorylation, along with reduced gene activity of fast-twitch type II muscle fibers. Metabolomic profiling linked aging-related alterations in plasma metabolites to gene expression in glucose-responsive tissues, particularly in tRNA modifications, BCAA metabolism, and sex hormone signaling. Together, our multi-omic analyses provide a comprehensive understanding of the impacts of aging on glucose-responsive tissues and identify potential plasma biomarkers for these effects.

11.
Physiol Genomics ; 45(13): 509-20, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23673729

RESUMO

Type 2 diabetes (T2D)-associated SNPs are more likely to be expression quantitative trait loci (eQTLs). The allelic expression imbalance (AEI) analysis is the measure of relative expression between two allelic transcripts and is the most sensitive measurement to detect cis-regulatory effects. We performed AEI screening to detect cis-regulators for genes expressed in transformed lymphocytes of 190 Caucasian (CA) and African American (AA) subjects to identify functional variants for T2D susceptibility in the chromosome 1q21-24 region of linkage. Among transcribed SNPs studied in 115 genes, significant AEI (P < 0.001) occurred in 28 and 30 genes in CA and AA subjects, respectively. Analysis of the effect of selected AEI-SNPs (≥10% mean AEI) on total gene expression further established the cis-eQTLs in thioesterase superfamily member-4 (THEM4) (rs13320, P = 0.027), and IGSF8 (rs1131891, P = 0.02). Examination of published genome-wide association data identified significant associations (P < 0.01) of three AEI-SNPs with T2D in the DIAGRAM-v3 dataset. Six AEI single nucleotide polymorphisms, including rs13320 (P = 1.35E-04) in THEM4, were associated with glucose homeostasis traits in the MAGIC dataset. Evaluation of AEI-SNPs for association with glucose homeostasis traits in 611 nondiabetic subjects showed lower AIRG (P = 0.005) in those with TT/TC genotype for rs13320. THEM4 expression in adipose was higher (P = 0.005) in subjects carrying the T allele; in vitro analysis with luciferase construct confirmed the higher expression of the T allele. Resequencing of THEM4 exons in 192 CA subjects revealed four coding nonsynonymous variants, but did not explain transmission of T2D in 718 subjects from 67 Caucasian pedigrees. Our study indicates the role of a cis-regulatory SNP in THEM4 that may influence T2D predisposition by modulating glucose homeostasis.


Assuntos
Desequilíbrio Alélico/genética , Cromossomos Humanos Par 1/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Testes Genéticos , Polimorfismo de Nucleotídeo Único/genética , Regiões 3' não Traduzidas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Negro ou Afro-Americano/genética , Estudos de Casos e Controles , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Células HEK293 , Homeostase/genética , Humanos , Luciferases/metabolismo , Proteínas de Membrana/genética , Fenótipo , Característica Quantitativa Herdável , Receptores Imunológicos/genética , Tioléster Hidrolases/genética , População Branca/genética
12.
J Hum Genet ; 58(6): 378-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23552671

RESUMO

We previously localized type 2 diabetes (T2D)-susceptibility genes to five chromosomal regions through a genome-wide linkage scan of T2D and age of diagnosis (AOD) in the African American subset of the GENNID sample. To follow up these findings, we repeated the linkage and association analysis using genotypes on an additional 9203 fine-mapping single nucleotide polymorphisms (SNPs) selected to tag genes under the linkage peaks. In each of the five regions, we confirmed linkage and inferred the presence of ≥2 susceptibility genes. The evidence of multiple susceptibility genes consisted of: (1) multiple linkage peaks in four of the five regions; and (2) association of T2D and AOD with SNPs within ≥2 genes in every region. The associated genes included 3 previously reported to associate with T2D or related traits (GRB10, NEDD4L, LIPG) and 24 novel candidate genes, including genes in lipid metabolism (ACOXL) and cell-cell and cell-matrix adhesion (MAGI2, CLDN4, CTNNA2).


Assuntos
Negro ou Afro-Americano/genética , Diabetes Mellitus Tipo 2/genética , Ligação Genética , Predisposição Genética para Doença , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Proteínas de Transporte/genética , Junções Célula-Matriz/química , Junções Célula-Matriz/genética , Mapeamento Cromossômico , Cromossomos Humanos/genética , Claudina-4/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Feminino , Proteína Adaptadora GRB10/genética , Estudo de Associação Genômica Ampla , Genótipo , Guanilato Quinases , Humanos , Lipase/genética , Metabolismo dos Lipídeos/genética , Masculino , Pessoa de Meia-Idade , Ubiquitina-Proteína Ligases Nedd4 , Fenótipo , Polimorfismo de Nucleotídeo Único , Ubiquitina-Proteína Ligases/genética , Adulto Jovem , alfa Catenina/genética
13.
J Nanosci Nanotechnol ; 13(4): 2557-65, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23763129

RESUMO

Highly crystalline pure phase multi-ferroic bismuth ferrite nanoparticles have been integrated into the ordered mesoporous silica material through one pot synthesis protocol. Here, amphiphilic tri-block copolymer Pluronic P123 is being used as structure-directing agent. High temperature heating during calcination and acid treatment eliminates the presence of probable impurity phases. The existence of large uniform ordered mesopores with hexagonal pore architecture are evidenced from the small angle powder XRD, TEM image analysis and N2 adsorption/desorption isotherms. The material has considerably small optical band gap of 2.16 eV. The large specific surface area (396 m2 g(-1)) along with high crystallinity and small optical band gap of mesoporous bismuth ferrite loaded silica nanocomposite (MBFSN-1) materials suggested their potential utility as photocatalyst. Intriguingly, it completely decomposes methyl orange dye under UV-visible light irradiation within only 1 h and together with good reusability.

14.
Obesity (Silver Spring) ; 31(10): 2543-2556, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37614163

RESUMO

OBJECTIVE: Obesity is a key risk factor for metabolic syndrome (MetS); however, >10% of lean individuals meet MetS criteria. Visceral adipose tissue (VAT) disproportionately contributes to inflammation and insulin resistance compared with subcutaneous fat depots. The primary aim of this study was to profile tissue microbiome components in VAT over a wide range of metabolic statuses in a highly clinically relevant model. METHODS: VAT was profiled from nonhuman primates that naturally demonstrate four distinct health phenotypes despite consuming a healthy diet, namely metabolically healthy lean and obese and metabolically unhealthy lean and obese. RESULTS: VAT biopsied from unhealthy lean and obese nonhuman primates demonstrated upregulation of immune signaling pathways, a tissue microbiome enriched in gram-negative bacteria including Pseudomonas, and deficiencies in anti-inflammatory adipose tissue M2 macrophages. VAT microbiomes were distinct from fecal microbiomes, and fecal microbiomes did not differ by metabolic health group, which was in contrast to the VAT bacterial communities. CONCLUSIONS: Immune activation with gram-negative VAT microbial communities is a consistent feature in elevated MetS risk in both lean and obesity states.


Assuntos
Síndrome Metabólica , Obesidade , Animais , Tecido Adiposo , Biópsia , Primatas
15.
Cell Syst ; 14(1): 41-57.e8, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36630956

RESUMO

Our knowledge of the cell-type-specific mechanisms of insulin resistance remains limited. To dissect the cell-type-specific molecular signatures of insulin resistance, we performed a multiscale gene network analysis of adipose and muscle tissues in African and European ancestry populations. In adipose tissues, a comparative analysis revealed ethnically conserved cell-type signatures and two adipocyte subtype-enriched modules with opposite insulin sensitivity responses. The modules enriched for adipose stem and progenitor cells as well as immune cells showed negative correlations with insulin sensitivity. In muscle tissues, the modules enriched for stem cells and fibro-adipogenic progenitors responded to insulin sensitivity oppositely. The adipocyte and muscle fiber-enriched modules shared cellular-respiration-related genes but had tissue-specific rearrangements of gene regulations in response to insulin sensitivity. Integration of the gene co-expression and causal networks further pinpointed key drivers of insulin resistance. Together, this study revealed the cell-type-specific transcriptomic networks and signaling maps underlying insulin resistance in major glucose-responsive tissues. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Resistência à Insulina , Humanos , Resistência à Insulina/genética , Multiômica , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Perfilação da Expressão Gênica
16.
Diabetes ; 72(1): 135-148, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219827

RESUMO

Despite the successes of human genome-wide association studies, the causal genes underlying most metabolic traits remain unclear. We used outbred heterogeneous stock (HS) rats, coupled with expression data and mediation analysis, to identify quantitative trait loci (QTLs) and candidate gene mediators for adiposity, glucose tolerance, serum lipids, and other metabolic traits. Physiological traits were measured in 1,519 male HS rats, with liver and adipose transcriptomes measured in >410 rats. Genotypes were imputed from low-coverage whole-genome sequencing. Linear mixed models were used to detect physiological and expression QTLs (pQTLs and eQTLs, respectively), using both single nucleotide polymorphism (SNP)- and haplotype-based models for pQTL mapping. Genes with cis-eQTLs that overlapped pQTLs were assessed as causal candidates through mediation analysis. We identified 14 SNP-based pQTLs and 19 haplotype-based pQTLs, of which 10 were in common. Using mediation, we identified the following genes as candidate mediators of pQTLs: Grk5 for fat pad weight and serum triglyceride pQTLs on Chr1, Krtcap3 for fat pad weight and serum triglyceride pQTLs on Chr6, Ilrun for a fat pad weight pQTL on Chr20, and Rfx6 for a whole pancreatic insulin content pQTL on Chr20. Furthermore, we verified Grk5 and Ktrcap3 using gene knockdown/out models, thereby shedding light on novel regulators of obesity.


Assuntos
Adiposidade , Insulinas , Ratos , Masculino , Humanos , Animais , Adiposidade/genética , Estudo de Associação Genômica Ampla , Obesidade/genética , Triglicerídeos , Insulinas/genética , Lipídeos , Polimorfismo de Nucleotídeo Único
17.
Pharmacogenet Genomics ; 22(7): 484-97, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22437669

RESUMO

OBJECTIVES: We aimed to define the effects of peroxisomal proliferator-activated receptor γ (PPARγ) and PPARα agonist mono and combination therapy on adipose tissue and skeletal muscle gene expression in relation to insulin sensitivity. We further investigated the role of genetic polymorphisms in PPAR ligand-modulated genes in transcriptional regulation and glucose homeostasis. MATERIALS AND METHODS: Genome-wide transcript profiles of subcutaneous adipose and skeletal muscle and metabolic phenotypes were assessed before and after 10 weeks of pioglitazone and fenofibrate mono or combination therapy in 26 patients with impaired glucose tolerance. To establish the functional role of single nucleotide polymorphisms (SNPs) in genes modulated by pioglitazone alone or in combination with fenofibrate, we examined genome-wide association data of continuous glycemic phenotypes from the Meta-Analyses of Glucose and Insulin-Related Traits Consortium study and adipose eQTL data from the Multi Tissue Human Expression Resource study. RESULTS: PPARγ, alone or in combination with PPARα agonists, mediated upregulation of genes involved in the TCA cycle, branched-chain amino acid (BCAA) metabolism, fatty acid metabolism, PPAR signaling, AMPK and cAMP signaling, and insulin signaling pathways, and downregulation of genes in antigen processing and presentation, and immune and inflammatory response in adipose tissue. Remarkably few changes were found in muscle. Strong enrichment of genes involved in propanoate metabolism, fatty acid elongation in the mitochondria, and acetyl-CoA metabolic process were observed only in adipose tissue of the combined pioglitazone and fenofibrate treatment group. After examining Meta-Analyses of Glucose and Insulin-Related Traits Consortium data, SNPs in 22 genes modulated by PPAR ligands were associated with fasting plasma glucose and the expression of 28 transcripts modulated by PPAR ligands was under control of local genetic regulators (cis-eQTLs) in adipose tissue of Multi Tissue Human Expression Resource study twins. CONCLUSION: We found differences in transcriptional mechanisms that may describe the insulin-sensitizing effects of PPARγ agonist monotherapy or in combination with a PPARα agonist. The regulatory and glucose homeostasis trait-associated SNPs in PPAR agonist-modulated genes are important candidates for future studies that may explain the interindividual variability in response to thiazolidinedione and fenofibrate treatment.


Assuntos
Fenofibrato/uso terapêutico , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Tiazolidinedionas/uso terapêutico , Adolescente , Adulto , Idoso , Feminino , Fenofibrato/farmacologia , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Ligantes , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Fenótipo , Pioglitazona , Locos de Características Quantitativas , Tiazolidinedionas/farmacologia
18.
J Hum Genet ; 57(1): 57-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22113416

RESUMO

Prior type 2 diabetes (T2D) genome-wide association studies (GWASs) have generated a list of well-replicated susceptibility loci in populations of European and Asian ancestry. To validate the trans-ethnic contribution of the single-nucleotide polymorphisms (SNPs) involved in these GWASs, we performed a family-based association analysis of 32 selected GWAS SNPs in a cohort of 1496 African-American (AA) subjects from the Genetics of NIDDM (GENNID) study. Functional roles of these SNPs were evaluated by screening cis-eQTLs in transformed lymphoblast cell lines available for a sub-group of Genetics of NIDDM (GENNID) families from Arkansas. Only three of the 32 GWAS-derived SNPs showed nominally significant association with T2D in our AA cohort. Among the replicated SNPs rs864745 in JAZF1 and rs10490072 in BCL11A gene (P=0.006 and 0.03, respectively, after adjustment for body mass index) were within the 1-lod drop support interval of T2D linkage peaks reported in these families. Genotyping of 19 tag SNPs in these two loci revealed no further common SNPs or haplotypes that may be a stronger predictor of T2D susceptibility than the index SNPs. Six T2D GWAS SNPs (rs6698181, rs9472138, rs730497, rs10811661, rs11037909 and rs1153188) were associated with nearby transcript expression in transformed lymphoblast cell lines of GENNID AA subjects. Thus, our study indicates a nominal role for JAZF1 and BCL11A variants in T2D susceptibility in AAs and suggested little overlap in known susceptibility to T2D between European- and African-derived populations when considering GWAS SNPs alone.


Assuntos
Negro ou Afro-Americano/genética , Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Transporte/metabolismo , Proteínas Correpressoras , Proteínas de Ligação a DNA , Família , Regulação da Expressão Gênica , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras
19.
J Hum Genet ; 56(7): 491-5, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525879

RESUMO

The risk of type 2 diabetes (T2D) increases with obesity. One possible explanation is that pleiotropic genes affect risk of both T2D and obesity. To identify pleiotropic genes, we performed bivariate analysis of T2D with waist-hip ratio (WHR) and with body mass index (BMI) in the African-American subset of the Genetics of NIDDM (GENNID) sample. Of 12 T2D loci identified through suggestive or higher univariate logarithm of the odds ratio (lod) scores, we inferred pleiotropy with obesity for six (chromosomes 1 at 17-19 Mb, 2 at 237-240 Mb, 7 at 54-73 Mb, 13 at 26-30 Mb, 16 at 26-47 Mb and 20 at 56-59 Mb). These findings provide evidence that at least some of the co-occurrence of obesity with T2D is because of pleiotropic genes. We also inferred four obesity loci through suggestive or higher lod scores for WHR (chromosomes 1 at 24-32 Mb, 2 at 79-88 Mb, 2 at 234-238 Mb and 3 at 148-159 Mb).


Assuntos
Diabetes Mellitus Tipo 2/genética , Pleiotropia Genética , Obesidade/genética , Cromossomos Humanos Par 1/genética , Diabetes Mellitus Tipo 2/complicações , Feminino , Ligação Genética , Humanos , Escore Lod , Masculino , Obesidade/complicações , Fatores de Risco , Relação Cintura-Quadril
20.
Mol Metab ; 54: 101342, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563731

RESUMO

OBJECTIVE: Identify and characterize circulating metabolite profiles associated with adiposity to inform precision medicine. METHODS: Untargeted plasma metabolomic profiles in the Insulin Resistance Atherosclerosis Family Study (IRASFS) Mexican American cohort (n = 1108) were analyzed for association with anthropometric (body mass index, BMI; waist circumference, WC; waist-to-hip ratio, WHR) and computed tomography measures (visceral adipose tissue, VAT; subcutaneous adipose tissue, SAT; visceral-to-subcutaneous ratio, VSR) of adiposity. Genetic data, inclusive of genome-wide array-based genotyping, whole exome sequencing (WES) and whole genome sequencing (WGS), were evaluated to identify the genetic contributors. Phenotypic and genetic association signals were replicated across ancestries. Transcriptomic data were analyzed to explore the relationship between genetic and metabolomic data. RESULTS: A partially characterized metabolite, tentatively named metabolonic lactone sulfate (X-12063), was consistently associated with BMI, WC, WHR, VAT, and SAT in IRASFS Mexican Americans (PMA <2.02 × 10-27). Trait associations were replicated in IRASFS African Americans (PAA < 1.12 × 10-07). Expanded analyses revealed associations with multiple phenotypic measures of cardiometabolic health, e.g. insulin sensitivity (SI), triglycerides (TG), diastolic blood pressure (DBP) and plasminogen activator inhibitor-1 (PAI-1) in both ancestries. Metabolonic lactone sulfate levels were heritable (h2 > 0.47), and a significant genetic signal at the ZSCAN25/CYP3A5 locus (PMA = 9.00 × 10-41, PAA = 2.31 × 10-10) was observed, highlighting a putative functional variant (rs776746, CYP3A5∗3). Transcriptomic analysis in the African American Genetics of Metabolism and Expression (AAGMEx) cohort supported the association of CYP3A5 with metabolonic lactone sulfate levels (PFDR = 6.64 × 10-07). CONCLUSIONS: Variant rs776746 is associated with a decrease in the transcript levels of CYP3A5, which in turn is associated with increased metabolonic lactone sulfate levels and poor cardiometabolic health.


Assuntos
Doenças Cardiovasculares/metabolismo , Lactonas/metabolismo , Obesidade/metabolismo , Sulfatos/metabolismo , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa