Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(17): 177601, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412287

RESUMO

We report on the epitaxial strain-driven electronic and antiferromagnetic modulations of a pseudospin-half square-lattice realized in superlattices of (SrIrO_{3})_{1}/(SrTiO_{3})_{1}. With increasing compressive strain, we find the low-temperature insulating behavior to be strongly suppressed with a corresponding systematic reduction of both the Néel temperature and the staggered moment. However, despite such a suppression, the system remains weakly insulating above the Néel transition. The emergence of metallicity is observed under large compressive strain but only at temperatures far above the Néel transition. These behaviors are characteristics of the Slater-Mott crossover regime, providing a unique experimental model system of the spin-half Hubbard Hamiltonian with a tunable intermediate coupling strength.

2.
J Phys Condens Matter ; 26(9): 093001, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24523356

RESUMO

We review the state of the art of surface magnetic property control with non-magnetic means, concentrating on metallic surfaces and techniques such as charge-doping or external electric field (EEF) application. Magneto-electric coupling via EEF-based charge manipulation is discussed as a way to tailor single adatom spins, exchange interaction between adsorbates or anisotropies of layered systems. The mechanisms of paramagnetic and spin-dependent electric field screening and the effect thereof on surface magnetism are discussed in the framework of theoretical and experimental studies. The possibility to enhance the effect of EEF by immersing the target system into an electrolyte or ionic liquid is discussed by the example of substitutional impurities and metallic alloy multilayers. A similar physics is pointed out for the case of charge traps, metallic systems decoupled from a bulk electron bath. In that case the charging provides the charge carrier density changes necessary to affect the magnetic moments and anisotropies in the system. Finally, the option of using quasi-free electrons rather than localized atomic spins for surface magnetism control is discussed with the example of Shockley-type metallic surface states confined to magnetic nanoislands.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa