Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Biol ; 34 Suppl 1: e23659, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358377

RESUMO

OBJECTIVES: Public engagement is increasingly viewed as an important pillar of scientific scholarship. For early career and established scholars, navigating the mosaic landscape of public education and science communication, noted for rapid "ecological" succession, can be daunting. Moreover, academics are characterized by diverse skills, motivations, values, positionalities, and temperaments that may differentially incline individuals to particular public translation activities. METHODS: Here we briefly contextualize engagement activities within a scholarly portfolio, describe the use of one public education program-March Mammal Madness (MMM)- to highlight approaches to science communication, and explore essential elements and practical considerations for creating and sustaining outreach pursuits in tandem with other scholarly activities. RESULTS: MMM, an annual simulated tournament of living and fossil animal taxa, has reached hundreds of thousands of learners since 2013. This program has provided a platform to communicate research findings from biology and anthropology and showcase numerous scholars in these fields. MMM has leveraged tournament devices to intentionally address topics of climate change, capitalist environmental degradation, academic sexism, and racist settler-colonialism. The tournament, however, has also perpetuated implicit biases that need disrupting. CONCLUSIONS: By embracing reflexive, self-interrogative, and growth attitudes, the tournament organizers iteratively refine and improve this public science education program to better align our activities with our values and goals. Our experiences with MMM suggest that dispersing science is most sustainable when we combine ancestral adaptations for cooperation, community, and storytelling with good-natured competition in the context of shared experiences and shared values.


Assuntos
Comunicação , Mamíferos , Animais , Humanos
2.
Proc Biol Sci ; 287(1934): 20201013, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900310

RESUMO

Across group-living animals, linear dominance hierarchies lead to disparities in access to resources, health outcomes and reproductive performance. Studies of how dominance rank predicts these traits typically employ one of several dominance rank metrics without examining the assumptions each metric makes about its underlying competitive processes. Here, we compare the ability of two dominance rank metrics-simple ordinal rank and proportional or 'standardized' rank-to predict 20 traits in a wild baboon population in Amboseli, Kenya. We propose that simple ordinal rank best predicts traits when competition is density-dependent, whereas proportional rank best predicts traits when competition is density-independent. We found that for 75% of traits (15/20), one rank metric performed better than the other. Strikingly, all male traits were best predicted by simple ordinal rank, whereas female traits were evenly split between proportional and simple ordinal rank. Hence, male and female traits are shaped by different competitive processes: males are largely driven by density-dependent resource access (e.g. access to oestrous females), whereas females are shaped by both density-independent (e.g. distributed food resources) and density-dependent resource access. This method of comparing how different rank metrics predict traits can be used to distinguish between different competitive processes operating in animal societies.


Assuntos
Papio/fisiologia , Comportamento Social , Predomínio Social , Animais , Feminino , Quênia , Masculino
3.
Am J Primatol ; 81(10-11): e22970, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30941803

RESUMO

To date, most insights into the processes shaping vertebrate gut microbiomes have emerged from studies with cross-sectional designs. While this approach has been valuable, emerging time series analyses on vertebrate gut microbiomes show that gut microbial composition can change rapidly from 1 day to the next, with consequences for host physical functioning, health, and fitness. Hence, the next frontier of microbiome research will require longitudinal perspectives. Here we argue that primatologists, with their traditional focus on tracking the lives of individual animals and familiarity with longitudinal fecal sampling, are well positioned to conduct research at the forefront of gut microbiome dynamics. We begin by reviewing some of the most important ecological processes governing microbiome change over time, and briefly summarizing statistical challenges and approaches to microbiome time series analysis. We then introduce five questions of general interest to microbiome science where we think field-based primate studies are especially well positioned to fill major gaps: (a) Do early life events shape gut microbiome composition in adulthood? (b) Do shifting social landscapes cause gut microbial change? (c) Are gut microbiome phenotypes heritable across variable environments? (d) Does the gut microbiome show signs of host aging? And (e) do gut microbiome composition and dynamics predict host health and fitness? For all of these questions, we highlight areas where primatologists are uniquely positioned to make substantial contributions. We review preliminary evidence, discuss possible study designs, and suggest future directions.


Assuntos
Microbioma Gastrointestinal , Primatas/microbiologia , Animais , Ecossistema , Fezes/microbiologia , Interações entre Hospedeiro e Microrganismos , Estudos Longitudinais , Meio Social
4.
Geroscience ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693466

RESUMO

Biological aging is near-ubiquitous in the animal kingdom, but its timing and pace vary between individuals and over lifespans. Prospective, individual-based studies of wild animals-especially non-human primates-help identify the social and environmental drivers of this variation by indicating the conditions and exposure windows that affect aging processes. However, measuring individual biological age in wild primates is challenging because several of the most promising methods require invasive sampling. Here, we leverage observational data on behavior and physiology, collected non-invasively from 319 wild female baboons across 2402 female-years of study, to develop a composite predictor of age: the non-invasive physiology and behavior (NPB) clock. We found that age predictions from the NPB clock explained 51% of the variation in females' known ages. Further, deviations from the clock's age predictions predicted female survival: females predicted to be older than their known ages had higher adult mortality. Finally, females who experienced harsh early-life conditions were predicted to be about 6 months older than those who grew up in more benign conditions. While the relationship between early adversity and NPB age is noisy, this estimate translates to a predicted 2-3 year reduction in mean adult lifespan in our model. A constraint of our clock is that it is tailored to data collection approaches implemented in our study population. However, many of the clock's components have analogs in other populations, suggesting that non-invasive data can provide broadly applicable insight into heterogeneity in biological age in natural populations.

5.
Appl Environ Microbiol ; 79(17): 5384-93, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23645189

RESUMO

Leptospirillum spp. are widespread members of acidophilic microbial communities that catalyze ferrous iron oxidation, thereby increasing sulfide mineral dissolution rates. These bacteria play important roles in environmental acidification and are harnessed for bioleaching-based metal recovery. Known members of the Leptospirillum clade of the Nitrospira phylum are Leptospirillum ferrooxidans (group I), Leptospirillum ferriphilum and "Leptospirillum rubarum" (group II), and Leptospirillum ferrodiazotrophum (group III). In the Richmond Mine acid mine drainage (AMD) system, biofilm formation is initiated by L. rubarum; L. ferrodiazotrophum appears in later developmental stages. Here we used community metagenomic data from unusual, thick floating biofilms to identify distinguishing metabolic traits in a rare and uncultivated community member, the new species "Leptospirillum group IV UBA BS." These biofilms typically also contain a variety of Archaea, Actinobacteria, and a few other Leptospirillum spp. The Leptospirillum group IV UBA BS species shares 98% 16S rRNA sequence identity and 70% average amino acid identity between orthologs with its closest relative, L. ferrodiazotrophum. The presence of nitrogen fixation and reverse tricarboxylic acid (TCA) cycle proteins suggest an autotrophic metabolism similar to that of L. ferrodiazotrophum, while hydrogenase proteins suggest anaerobic metabolism. Community transcriptomic and proteomic analyses demonstrate expression of a multicopper oxidase unique to this species, as well as hydrogenases and core metabolic genes. Results suggest that the Leptospirillum group IV UBA BS species might play important roles in carbon fixation, nitrogen fixation, hydrogen metabolism, and iron oxidation in some acidic environments.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Microbiologia Ambiental , Resíduos Industriais , Anaerobiose , Proteínas de Bactérias/genética , Ciclo do Carbono , Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Metagenômica , Fixação de Nitrogênio , Proteômica , RNA Ribossômico 16S/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
6.
Elife ; 122023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158607

RESUMO

Ecological relationships between bacteria mediate the services that gut microbiomes provide to their hosts. Knowing the overall direction and strength of these relationships is essential to learn how ecology scales up to affect microbiome assembly, dynamics, and host health. However, whether bacterial relationships are generalizable across hosts or personalized to individual hosts is debated. Here, we apply a robust, multinomial logistic-normal modeling framework to extensive time series data (5534 samples from 56 baboon hosts over 13 years) to infer thousands of correlations in bacterial abundance in individual baboons and test the degree to which bacterial abundance correlations are 'universal'. We also compare these patterns to two human data sets. We find that, most bacterial correlations are weak, negative, and universal across hosts, such that shared correlation patterns dominate over host-specific correlations by almost twofold. Further, taxon pairs that had inconsistent correlation signs (either positive or negative) in different hosts always had weak correlations within hosts. From the host perspective, host pairs with the most similar bacterial correlation patterns also had similar microbiome taxonomic compositions and tended to be genetic relatives. Compared to humans, universality in baboons was similar to that in human infants, and stronger than one data set from human adults. Bacterial families that showed universal correlations in human infants were often universal in baboons. Together, our work contributes new tools for analyzing the universality of bacterial associations across hosts, with implications for microbiome personalization, community assembly, and stability, and for designing microbiome interventions to improve host health.


Communities of bacteria living in the guts of humans and other animals perform essential services for their hosts such as digesting food, degrading toxins, or fighting viruses and other bacteria that cause disease. These services emerge from so-called 'ecological' relationships between different species of bacteria. One species, for example, may break down a molecule in human food into another compound that is, in turn, digested by another species into a small molecule that the human gut can absorb and use. The bacteria involved in such a process may become more or less common together in their host. In other situations, some bacteria may have opposing roles to each other, meaning that if one species becomes more abundant it may reduce the level of the other. However, it is not known if relationships between different bacteria are consistent across hosts (i.e., universal) or unique to each host (personalized). In other words, if a pair of bacteria increase and decrease in abundance together in one host, do they do the same in other hosts? Microbes often swap genes with each other to gain new traits; as each host harbors a distinctive set of gut microbes, it may be possible for microbial relationships to change depending on the bacterial species present in a specific environment. To investigate, Roche et al. studied the bacteria in thousands of samples of feces collected from 56 baboons over a 13-year period. These samples came from a long-term research project in Amboseli, Kenya which has been studying a population of wild baboons continuously since 1971. Roche et al. measured the abundance of hundreds of gut bacteria in the feces to understand the relationships between pairs. This revealed that connections between species were largely universal rather than personalized to each baboon. Furthermore, the pairs of bacteria with the strongest positive or negative associations had the most consistent relationships across the baboons. Microbial relationships that have strong effects on the microbiome's composition might therefore be especially universal. Further analyses measuring gut bacteria in human babies also found that relationships between pairs of bacteria were largely universal. Hence, individual species of bacteria may fill similar ecological roles in each host across humans and other primates, and perhaps also in other mammals. These findings suggest that it may be possible to leverage the ecological relationships between bacteria to develop universal therapies for human diseases associated with gut bacteria, such as inflammatory bowel disease or Clostridium difficile infection.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Humanos , Papio/genética , Bactérias/genética , RNA Ribossômico 16S/genética
7.
Nat Ecol Evol ; 6(7): 955-964, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654895

RESUMO

Human gut microbial dynamics are highly individualized, making it challenging to link microbiota to health and to design universal microbiome therapies. This individuality is typically attributed to variation in host genetics, diets, environments and medications but it could also emerge from fundamental ecological forces that shape microbiota more generally. Here, we leverage extensive gut microbial time series from wild baboons-hosts who experience little interindividual dietary and environmental heterogeneity-to test whether gut microbial dynamics are synchronized across hosts or largely idiosyncratic. Despite their shared lifestyles, baboon microbiota were only weakly synchronized. The strongest synchrony occurred among baboons living in the same social group, probably because group members range over the same habitat and simultaneously encounter the same sources of food and water. However, this synchrony was modest compared to each host's personalized dynamics. In support, host-specific factors, especially host identity, explained, on average, more than three times the deviance in longitudinal dynamics compared to factors shared with social group members and ten times the deviance of factors shared across the host population. These results contribute to mounting evidence that highly idiosyncratic gut microbiomes are not an artefact of modern human environments and that synchronizing forces in the gut microbiome (for example, shared environments, diets and microbial dispersal) are not strong enough to overwhelm key drivers of microbiome personalization, such as host genetics, priority effects, horizontal gene transfer and functional redundancy.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Dieta , Microbioma Gastrointestinal/genética , Humanos , Papio
8.
mSystems ; 7(1): e0124021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089060

RESUMO

Social and political policy, human activities, and environmental change affect the ways in which microbial communities assemble and interact with people. These factors determine how different social groups are exposed to beneficial and/or harmful microorganisms, meaning microbial exposure has an important socioecological justice context. Therefore, greater consideration of microbial exposure and social equity in research, planning, and policy is imperative. Here, we identify 20 research questions considered fundamentally important to promoting equitable exposure to beneficial microorganisms, along with safeguarding resilient societies and ecosystems. The 20 research questions we identified span seven broad themes, including the following: (i) sociocultural interactions; (ii) Indigenous community health and well-being; (iii) humans, urban ecosystems, and environmental processes; (iv) human psychology and mental health; (v) microbiomes and infectious diseases; (vi) human health and food security; and (vii) microbiome-related planning, policy, and outreach. Our goal was to summarize this growing field and to stimulate impactful research avenues while providing focus for funders and policymakers.


Assuntos
Doenças Transmissíveis , Microbiota , Humanos , Políticas , Justiça Social , Saúde Pública
9.
Science ; 373(6551): 181-186, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244407

RESUMO

Relatives have more similar gut microbiomes than nonrelatives, but the degree to which this similarity results from shared genotypes versus shared environments has been controversial. Here, we leveraged 16,234 gut microbiome profiles, collected over 14 years from 585 wild baboons, to reveal that host genetic effects on the gut microbiome are nearly universal. Controlling for diet, age, and socioecological variation, 97% of microbiome phenotypes were significantly heritable, including several reported as heritable in humans. Heritability was typically low (mean = 0.068) but was systematically greater in the dry season, with low diet diversity, and in older hosts. We show that longitudinal profiles and large sample sizes are crucial to quantifying microbiome heritability, and indicate scope for selection on microbiome characteristics as a host phenotype.


Assuntos
Bactérias/classificação , Meio Ambiente , Microbioma Gastrointestinal/genética , Papio/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/isolamento & purificação , Envelhecimento , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/isolamento & purificação , Dieta , Fezes/microbiologia , Feminino , Firmicutes/classificação , Firmicutes/genética , Firmicutes/crescimento & desenvolvimento , Firmicutes/isolamento & purificação , Genótipo , Humanos , Masculino , Papio/genética , Fenótipo , Estações do Ano , Comportamento Social
10.
mSystems ; 6(4): e0047121, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34313460

RESUMO

Humans are inextricably linked to each other and our natural world, and microorganisms lie at the nexus of those interactions. Microorganisms form genetically flexible, taxonomically diverse, and biochemically rich communities, i.e., microbiomes that are integral to the health and development of macroorganisms, societies, and ecosystems. Yet engagement with beneficial microbiomes is dictated by access to public resources, such as nutritious food, clean water and air, safe shelter, social interactions, and effective medicine. In this way, microbiomes have sociopolitical contexts that must be considered. The Microbes and Social Equity (MSE) Working Group connects microbiology with social equity research, education, policy, and practice to understand the interplay of microorganisms, individuals, societies, and ecosystems. Here, we outline opportunities for integrating microbiology and social equity work through broadening education and training; diversifying research topics, methods, and perspectives; and advocating for evidence-based public policy that supports sustainable, equitable, and microbial wealth for all.

11.
Elife ; 102021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33616530

RESUMO

March Mammal Madness is a science outreach project that, over the course of several weeks in March, reaches hundreds of thousands of people in the United States every year. We combine four approaches to science outreach - gamification, social media platforms, community event(s), and creative products - to run a simulated tournament in which 64 animals compete to become the tournament champion. While the encounters between the animals are hypothetical, the outcomes rely on empirical evidence from the scientific literature. Players select their favored combatants beforehand, and during the tournament scientists translate the academic literature into gripping "play-by-play" narration on social media. To date ~1100 scholarly works, covering almost 400 taxa, have been transformed into science stories. March Mammal Madness is most typically used by high-school educators teaching life sciences, and we estimate that our materials reached ~1% of high-school students in the United States in 2019. Here we document the intentional design, public engagement, and magnitude of reach of the project. We further explain how human psychological and cognitive adaptations for shared experiences, social learning, narrative, and imagery contribute to the widespread use of March Mammal Madness.


Assuntos
Comportamento Animal , Educação/métodos , Mamíferos , Animais , Gamificação , Humanos , Narração , Mídias Sociais , Estudantes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa