Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(23): 15766-15775, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34792335

RESUMO

Mercury (Hg) is a pollutant of concern across Canada and transboundary anthropogenic Hg sources presently account for over 95% of national anthropogenic Hg deposition. This study applies novel statistical analyses of 82 high-resolution dated lake sediment cores collected from 19 regions across Canada, including nearby point sources and in remote regions and spanning a full west-east geographical range of ∼4900 km (south of 60°N and between 132 and 64°W) to quantify the recent (1990-2018) spatial and temporal trends in anthropogenic atmospheric Hg deposition. Temporal trend analysis shows significant synchronous decreasing trends in post-1990 anthropogenic Hg fluxes in western Canada in contrast to increasing trends in the east, with spatial patterns largely driven by longitude and proximity to known point source(s). Recent sediment-derived Hg fluxes agreed well with the available wet deposition monitoring. Sediment-derived atmospheric Hg deposition rates also compared well to the modeled values derived from the Hg model, when lake sites located nearby (<100 km) point sources were omitted due to difficulties in comparison between the sediment-derived and modeled values at deposition "hot spots". This highlights the applicability of multi-core approaches to quantify spatio-temporal changes in Hg deposition over broad geographic ranges and assess the effectiveness of regional and global Hg emission reductions to address global Hg pollution concerns.


Assuntos
Mercúrio , Canadá , Monitoramento Ambiental , Poluição Ambiental , Sedimentos Geológicos , Lagos , Mercúrio/análise
2.
Environ Sci Technol ; 52(19): 10946-10955, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30229653

RESUMO

Increased delivery of mercury to ecosystems is a common consequence of industrialization, including in the Athabasca Oil Sands Region (AOSR) of Canada. Atmospheric mercury deposition has been studied previously in the AOSR; however, less is known about the impact of regional industry on toxic methylmercury (MeHg) concentrations in lake ecosystems. We measured total mercury (THg) and MeHg concentrations for five years from 50 lakes throughout the AOSR. Mean lake water concentrations of THg (0.4-5.3 ng L-1) and MeHg (0.01-0.34 ng L-1) were similar to those of other boreal lakes and <5% of all samples exceeded Provincial water quality guidelines. Lakes with the highest THg concentrations were found >100 km northwest of oil sands mines and received runoff from geological formations high in metals concentrations. MeHg concentrations were highest in those lakes, and in smaller productive lakes closer to oil sands mines. Simulated annual average direct deposition of THg to sampled lakes using an atmospheric chemical transport model showed <2% of all mercury deposited to sampled lakes was emitted from oil sands activities. Consequently, spatial patterns of mercury in AOSR lakes were likely most influenced by watershed and lake conditions, though mercury concentrations in these lakes may be perturbed with future development and climatic change.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Canadá , Ecossistema , Monitoramento Ambiental , Lagos , Campos de Petróleo e Gás , Óleo de Brassica napus
4.
Environ Sci Technol ; 48(3): 1707-17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24328426

RESUMO

High levels of mercury in marine mammals threaten the health of Arctic inhabitants. Whether the Arctic Ocean (AO) is a sink or a source of atmospheric mercury is unknown. Given the paucity of observations in the Arctic, models are useful in addressing this question. GEOS-Chem and GRAHM, two complex numerical mercury models, present contrasting pictures of atmospheric mercury input to AO at 45 and 108 Mg yr(-1), respectively, and ocean evasion at 90 and 33 Mg yr(-1), respectively. We provide a comprehensive evaluation of GRAHM simulated atmospheric mercury input to AO using mercury observations in air, precipitation and snowpacks, and an analysis of the discrepancy between the two modeling estimates using observations. We discover two peaks in high-latitude summertime concentrations of atmospheric mercury. We show that the first is caused mainly by snowmelt revolatilization and the second by AO evasion of mercury. Riverine mercury export to AO is estimated at 50 Mg yr(-1) based on measured DOC export and at 15.5-31 Mg yr(-1) based on simulated mercury in meltwater. The range of simulated mercury fluxes to and from AO reflects uncertainties in modeling mercury in the Arctic; comprehensive observations in all compartments of the Arctic ecosystem are needed to close the gap.


Assuntos
Poluentes Atmosféricos/análise , Ar/análise , Mercúrio/análise , Oceanos e Mares , Água do Mar/química , Poluentes Químicos da Água/análise , Animais , Regiões Árticas , Ecossistema , Modelos Teóricos , Estações do Ano
5.
PLoS One ; 18(5): e0285826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37186585

RESUMO

Limited information exists on mercury concentrations and environmental drivers of mercury bioaccumulation in high latitude terrestrial carnivores. Spatial patterns of mercury concentrations in wolverine (Gulo gulo, n = 419) were assessed across a 1,600,000 km2 study area in relation to landscape, climate, diet and biological factors in Arctic and boreal biomes of western Canada. Hydrogen stable isotope ratios were measured in wolverine hair from a subset of 80 animals to assess the spatial scale for characterizing environmental conditions of their habitat. Habitat characteristics were determined using GIS methods and raster datasets at two scales, the collection location point and a 150 km radius buffer, which was selected based on results of a correlation analysis between hydrogen stable isotopes in precipitation and wolverine hair. Total mercury concentrations in wolverine muscle ranged >2 orders of magnitude from 0.01 to 5.72 µg/g dry weight and varied geographically, with the highest concentrations in the Northwest Territories followed by Nunavut and Yukon. Regression models at both spatial scales indicated diet (based on nitrogen stable isotope ratios) was the strongest explanatory variable of mercury concentrations in wolverine, with smaller though statistically significant contributions from landscape variables (soil organic carbon, percent cover of wet area, percent cover of perennial snow-ice) and distance to the Arctic Ocean coast. The carbon and nitrogen stable isotope ratios of wolverine muscle suggested greater mercury bioaccumulation could be associated with feeding on marine biota in coastal habitats. Landscape variables identified in the modelling may reflect habitat conditions which support enhanced methylmercury transfer to terrestrial biota. Spatially-explicit estimates of wet atmospheric deposition were positively correlated with wolverine mercury concentrations but this variable was not selected in the final regression models. These landscape patterns provide a basis for further research on underlying processes enhancing methylmercury uptake in high latitude terrestrial food webs.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Mustelidae , Poluentes Químicos da Água , Animais , Mercúrio/análise , Monitoramento Ambiental , Carbono/análise , Solo , Dieta , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Nitrogênio/análise , Regiões Árticas , Poluentes Químicos da Água/análise
7.
Environ Res ; 119: 64-87, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23102902

RESUMO

Mercury in the Arctic is an important environmental and human health issue. The reliance of Northern Peoples on traditional foods, such as marine mammals, for subsistence means that they are particularly at risk from mercury exposure. The cycling of mercury in Arctic marine systems is reviewed here, with emphasis placed on the key sources, pathways and processes which regulate mercury levels in marine food webs and ultimately the exposure of human populations to this contaminant. While many knowledge gaps exist limiting our ability to make strong conclusions, it appears that the long-range transport of mercury from Asian emissions is an important source of atmospheric Hg to the Arctic and that mercury methylation resulting in monomethylmercury production (an organic form of mercury which is both toxic and bioaccumulated) in Arctic marine waters is the principal source of mercury incorporated into food webs. Mercury concentrations in biological organisms have increased since the onset of the industrial age and are controlled by a combination of abiotic factors (e.g., monomethylmercury supply), food web dynamics and structure, and animal behavior (e.g., habitat selection and feeding behavior). Finally, although some Northern Peoples have high mercury concentrations of mercury in their blood and hair, harvesting and consuming traditional foods have many nutritional, social, cultural and physical health benefits which must be considered in risk management and communication.


Assuntos
Ecossistema , Mercúrio/química , Poluentes Químicos da Água/química , Animais , Regiões Árticas , Exposição Ambiental , Humanos , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo
8.
Sci Total Environ ; 839: 156213, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623517

RESUMO

Global anthropogenic and legacy mercury (Hg) emissions are the main sources of Arctic Hg contamination, primarily transported there via the atmosphere. This review summarizes the state of knowledge of the global anthropogenic sources of Hg emissions, and examines recent changes and source attribution of Hg transport and deposition to the Arctic using models. Estimated global anthropogenic Hg emissions to the atmosphere for 2015 were ~2220 Mg, ~20% higher than 2010. Global anthropogenic, legacy and geogenic Hg emissions were, respectively, responsible for 32%, 64% (wildfires: 6-10%) and 4% of the annual Arctic Hg deposition. Relative contributions to Arctic deposition of anthropogenic origin was dominated by sources in East Asia (32%), Commonwealth of Independent States (12%), and Africa (12%). Model results exhibit significant spatiotemporal variations in Arctic anthropogenic Hg deposition fluxes, driven by regional differences in Hg air transport routes, surface and precipitation uptake rates, and inter-seasonal differences in atmospheric circulation and deposition pathways. Model simulations reveal that changes in meteorology are having a profound impact on contemporary atmospheric Hg in the Arctic. Reversal of North Atlantic Oscillation phase from strongly negative in 2010 to positive in 2015, associated with lower temperature and more sea ice in the Canadian Arctic, Greenland and surrounding ocean, resulted in enhanced production of bromine species and Hg(0) oxidation and lower evasion of Hg(0) from ocean waters in 2015. This led to increased Hg(II) (and its deposition) and reduced Hg(0) air concentrations in these regions in line with High Arctic observations. However, combined changes in meteorology and anthropogenic emissions led to overall elevated modeled Arctic air Hg(0) levels in 2015 compared to 2010 contrary to observed declines at most monitoring sites, likely due to uncertainties in anthropogenic emission speciation, wildfire emissions and model representations of air-surface Hg fluxes.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Regiões Árticas , Canadá , Monitoramento Ambiental/métodos , Mercúrio/análise
9.
Sci Total Environ ; 824: 153715, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35149079

RESUMO

Dramatic environmental shifts are occuring throughout the Arctic from climate change, with consequences for the cycling of mercury (Hg). This review summarizes the latest science on how climate change is influencing Hg transport and biogeochemical cycling in Arctic terrestrial, freshwater and marine ecosystems. As environmental changes in the Arctic continue to accelerate, a clearer picture is emerging of the profound shifts in the climate and cryosphere, and their connections to Hg cycling. Modeling results suggest climate influences seasonal and interannual variability of atmospheric Hg deposition. The clearest evidence of current climate change effects is for Hg transport from terrestrial catchments, where widespread permafrost thaw, glacier melt and coastal erosion are increasing the export of Hg to downstream environments. Recent estimates suggest Arctic permafrost is a large global reservoir of Hg, which is vulnerable to degradation with climate warming, although the fate of permafrost soil Hg is unclear. The increasing development of thermokarst features, the formation and expansion of thaw lakes, and increased soil erosion in terrestrial landscapes are increasing river transport of particulate-bound Hg and altering conditions for aquatic Hg transformations. Greater organic matter transport may also be influencing the downstream transport and fate of Hg. More severe and frequent wildfires within the Arctic and across boreal regions may be contributing to the atmospheric pool of Hg. Climate change influences on Hg biogeochemical cycling remain poorly understood. Seasonal evasion and retention of inorganic Hg may be altered by reduced sea-ice cover and higher chloride content in snow. Experimental evidence indicates warmer temperatures enhance methylmercury production in ocean and lake sediments as well as in tundra soils. Improved geographic coverage of measurements and modeling approaches are needed to better evaluate net effects of climate change and long-term implications for Hg contamination in the Arctic.


Assuntos
Mercúrio , Regiões Árticas , Mudança Climática , Ecossistema , Lagos , Mercúrio/análise
11.
Sci Total Environ ; 626: 668-677, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29396333

RESUMO

Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude. Total mercury and methylmercury concentrations in fur were positively correlated with concentrations in internal tissues (brain, liver, kidney) for a small subset (n=21) of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), validating the use of fur to indicate internal mercury exposure. Brain methylmercury concentrations were approximately 10% of total mercury concentrations in fur. Three bat species were mainly collected (little brown bats, big brown bats, and northern long-eared bats [M. septentrionalis]), with little brown bats having lower total mercury concentrations in their fur than the other two species at sites where both species were sampled. On average, juvenile bats had lower total mercury concentrations than adults but no differences were found between males and females of a species. Combining our dataset with previously published data for eastern Canada, median total mercury concentrations in fur of little brown bats ranged from 0.88-12.78µg/g among 11 provinces and territories. Highest concentrations were found in eastern Canada where bats are most endangered from introduced disease. Model estimates of atmospheric mercury deposition indicated that eastern Canada was exposed to greater mercury deposition than central and western sites. Further, mean total mercury concentrations in fur of adult little brown bats were positively correlated with site-specific estimates of atmospheric mercury deposition. This study provides the largest geographic coverage of mercury measurements in bats to date and indicates that atmospheric mercury deposition is important in determining spatial patterns of mercury accumulation in a mammalian species.


Assuntos
Poluentes Atmosféricos/metabolismo , Quirópteros , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Pelo Animal/química , Animais , Canadá , Monitoramento Ambiental , Feminino , Masculino , Análise Espacial
12.
Sci Total Environ ; 376(1-3): 228-40, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17324448

RESUMO

Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, one hemispheric and one global scale model participated in an atmospheric mercury modelling intercomparison study. Model-predicted concentrations in ambient air were compared against mercury species observed at four monitoring stations in Central and Northern Europe and a station on the Irish west coast. The modelled concentrations of total particulate mercury (TPM) were generally consistent with the measurements at all sites. The models exhibited significant ability to simulate concentrations of gaseous elemental mercury (GEM), but some of the short-duration peaks at the Central European stations could not be consistently reproduced. Possible reasons for these discrepancies include (1) errors in the anthropogenic emissions inventory utilized; (2) coarse spatial resolution of the models; and (3) uncertainty of natural and re-emitted mercury sources. The largest discrepancies between measurements and modelled concentrations were found for reactive gaseous mercury (RGM). For these models, the uncertainty in predicting short-term (two-week episode) variations of mercury species in air can be characterized by the following overall statistics: 90% of the results for TGM are within a factor of 1.35 of the measurements; for TPM, 90% are within a factor of 2.5; and for RGM, 90% are within a factor of 10.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Modelos Teóricos , Alemanha , Irlanda , Suécia , Incerteza
13.
Sci Total Environ ; 377(2-3): 319-33, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17367845

RESUMO

Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, two hemispheric and one global scale model participated in the atmospheric Hg modelling intercomparison study. The models were compared between each other and with available measurements from 11 monitoring stations of the EMEP measurement network. Because only a very limited number of long-term measurement records of Hg were available, significant attention was given to the intercomparison of modelling results. Monthly and annually averaged values of Hg concentrations and depositions as well as items of the Hg deposition budgets for individual European countries were compared. The models demonstrated good agreement (within +/-20%) between annual modelled and observed values of gaseous elemental Hg. Modelled values of Hg wet deposition in Western and Central Europe agreed with the observations within +/-45%. The probability to predict wet depositions within a factor of 2 with regard to measurements was 50-70% for all the models. The scattering of modelling results for dry depositions of Hg was more significant (up to +/-50% at the annual scale and even higher for monthly data). Contribution of dry deposition to the total Hg deposition was estimated at 20-30% with elevated dry deposition fluxes during summer time. The participating models agree in their predictions of transboundary pollution for individual countries within +/-60% at the monthly scale and within +/-30% at the annual scale. For the cases investigated, all the models predict that the major part of national anthropogenic Hg emissions is transported outside the country territory.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Modelos Teóricos , Monitoramento Ambiental , Europa (Continente)
14.
Sci Total Environ ; 509-510: 3-15, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25497576

RESUMO

Long-range atmospheric transport and deposition are important sources of mercury (Hg) to Arctic aquatic and terrestrial ecosystems. We review here recent progress made in the study of the transport, transformation, deposition and reemission of atmospheric Hg in the Canadian Arctic, focusing on field measurements (see Dastoor et al., this issue for a review of modeling studies on the same topics). Redox processes control the speciation of atmospheric Hg, and thus impart an important influence on Hg deposition, particularly during atmospheric mercury depletion events (AMDEs). Bromine radicals were identified as the primary oxidant of atmospheric Hg during AMDEs. Since the start of monitoring at Alert (NU) in 1995, the timing of peak AMDE occurrence has shifted to earlier times in the spring (from May to April) in recent years, and while AMDE frequency and GEM concentrations are correlated with local meteorological conditions, the reasons for this timing-shift are not understood. Mercury is subject to various post-depositional processes in snowpacks and a large portion of deposited oxidized Hg can be reemitted following photoreduction; how much Hg is deposited and reemitted depends on geographical location, meteorological, vegetative and sea-ice conditions, as well as snow chemistry. Halide anions in the snow can stabilize Hg, therefore it is expected that a smaller fraction of deposited Hg will be reemitted from coastal snowpacks. Atmospheric gaseous Hg concentrations have decreased in some parts of the Arctic (e.g., Alert) from 2000 to 2009 but at a rate that was less than that at lower latitudes. Despite numerous recent advances, a number of knowledge gaps remain, including uncertainties in the identification of oxidized Hg species in the air (and how this relates to dry vs. wet deposition), physical-chemical processes in air, snow and water-especially over sea ice-and the relationship between these processes and climate change.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Mercúrio/análise , Regiões Árticas , Atmosfera/química , Canadá
15.
Sci Total Environ ; 509-510: 16-27, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25604938

RESUMO

A review of mercury in the Canadian Arctic with a focus on field measurements is presented in part I (see Steffen et al., this issue). Here we provide insights into the dynamics of mercury in the Canadian Arctic from new and published mercury modeling studies using Environment Canada's mercury model. The model simulations presented in this study use global anthropogenic emissions of mercury for the period 1995-2005. The most recent modeling estimate of the net gain of mercury from the atmosphere to the Arctic Ocean is 75 Mg year(-1) and the net gain to the terrestrial ecosystems north of 66.5° is 42 Mg year(-1). Model based annual export of riverine mercury from North American, Russian and all Arctic watersheds to the Arctic Ocean are in the range of 2.8-5.6, 12.7-25.4 and 15.5-31.0 Mg year(-1), respectively. Analysis of long-range transport events of Hg at Alert and Little Fox Lake monitoring sites indicates that Asia contributes the most ambient Hg to the Canadian Arctic followed by contributions from North America, Russia, and Europe. The largest anthropogenic Hg deposition to the Canadian Arctic is from East Asia followed by Europe (and Russia), North America, and South Asia. An examination of temporal trends of Hg using the model suggests that changes in meteorology and changes in anthropogenic emissions equally contribute to the decrease in surface air elemental mercury concentrations in the Canadian Arctic with an overall decline of ~12% from 1990 to 2005. A slow increase in net deposition of Hg is found in the Canadian Arctic in response to changes in meteorology. Changes in snowpack and sea-ice characteristics and increase in precipitation in the Arctic related with climate change are found to be primary causes for the meteorology-related changes in air concentrations and deposition of Hg in the region. The model estimates that under the emissions reduction scenario of worldwide implementation of the best emission control technologies by 2020, mercury deposition could potentially be reduced by 18-20% in the Canadian Arctic.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Mercúrio/análise , Modelos Químicos , Regiões Árticas , Canadá , Monitoramento Ambiental
16.
Environ Sci Technol ; 42(14): 5183-8, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18754367

RESUMO

At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of interannual variability for 2002-2004 using the optimal configuration. We estimated the uncertainty of the model results to the Hg/Br reaction rate coefficient to be approximately 6%. Springtime is clearly demonstrated as the most active period of mercury exchanges and net surface gain (approximately 46% of annual accumulation) in the Arctic.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Periodicidade , Luz Solar , Regiões Árticas , Estações do Ano , Neve/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa