Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Hum Mutat ; 43(2): 143-157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34806794

RESUMO

X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemia, is caused by disrupting variants in the PHEX gene, located on the X chromosome. XLH is inherited in an X-linked pattern with complete penetrance observed for both males and females. Patients experience lifelong symptoms resulting from chronic hypophosphatemia, including impaired bone mineralization, skeletal deformities, growth retardation, and diminished quality of life. This chronic condition requires life-long management with disease-specific therapies, which can improve patient outcomes especially when initiated early in life. To centralize and disseminate PHEX variant information, we have established a new PHEX gene locus-specific database, PHEX LSDB. As of April 30, 2021, 870 unique PHEX variants, compiled from an older database of PHEX variants, a comprehensive literature search, a sponsored genetic testing program, and XLH clinical trials, are represented in the PHEX LSDB. This resource is publicly available on an interactive, searchable website (https://www.rarediseasegenes.com/), which includes a table of variants and associated data, graphical/tabular outputs of genotype-phenotype analyses, and an online submission form for reporting new PHEX variants. The database will be updated regularly with new variants submitted on the website, identified in the published literature, or shared from genetic testing programs.


Assuntos
Bases de Dados Genéticas , Raquitismo Hipofosfatêmico Familiar , Doenças Genéticas Ligadas ao Cromossomo X , Hipofosfatemia , Endopeptidase Neutra Reguladora de Fosfato PHEX , Raquitismo Hipofosfatêmico Familiar/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Hipofosfatemia/genética , Masculino , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Qualidade de Vida
2.
BMC Genomics ; 22(1): 11, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407096

RESUMO

BACKGROUND: The genus Ehrlichia consists of tick-borne obligatory intracellular bacteria that can cause deadly diseases of medical and agricultural importance. Ehrlichia sp. HF, isolated from Ixodes ovatus ticks in Japan [also referred to as I. ovatus Ehrlichia (IOE) agent], causes acute fatal infection in laboratory mice that resembles acute fatal human monocytic ehrlichiosis caused by Ehrlichia chaffeensis. As there is no small laboratory animal model to study fatal human ehrlichiosis, Ehrlichia sp. HF provides a needed disease model. However, the inability to culture Ehrlichia sp. HF and the lack of genomic information have been a barrier to advance this animal model. In addition, Ehrlichia sp. HF has several designations in the literature as it lacks a taxonomically recognized name. RESULTS: We stably cultured Ehrlichia sp. HF in canine histiocytic leukemia DH82 cells from the HF strain-infected mice, and determined its complete genome sequence. Ehrlichia sp. HF has a single double-stranded circular chromosome of 1,148,904 bp, which encodes 866 proteins with a similar metabolic potential as E. chaffeensis. Ehrlichia sp. HF encodes homologs of all virulence factors identified in E. chaffeensis, including 23 paralogs of P28/OMP-1 family outer membrane proteins, type IV secretion system apparatus and effector proteins, two-component systems, ankyrin-repeat proteins, and tandem repeat proteins. Ehrlichia sp. HF is a novel species in the genus Ehrlichia, as demonstrated through whole genome comparisons with six representative Ehrlichia species, subspecies, and strains, using average nucleotide identity, digital DNA-DNA hybridization, and core genome alignment sequence identity. CONCLUSIONS: The genome of Ehrlichia sp. HF encodes all known virulence factors found in E. chaffeensis, substantiating it as a model Ehrlichia species to study fatal human ehrlichiosis. Comparisons between Ehrlichia sp. HF and E. chaffeensis will enable identification of in vivo virulence factors that are related to host specificity, disease severity, and host inflammatory responses. We propose to name Ehrlichia sp. HF as Ehrlichia japonica sp. nov. (type strain HF), to denote the geographic region where this bacterium was initially isolated.


Assuntos
Ehrlichia chaffeensis , Ehrlichiose , Ixodes , Animais , Cães , Ehrlichia chaffeensis/genética , Ehrlichiose/veterinária , Genoma Bacteriano , Japão , Camundongos
3.
PLoS Pathog ; 13(8): e1006582, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28841717

RESUMO

For over 130 years, invasive pneumococcal disease has been associated with the presence of extracellular planktonic pneumococci, i.e. diplococci or short chains in affected tissues. Herein, we show that Streptococcus pneumoniae that invade the myocardium instead replicate within cellular vesicles and transition into non-purulent biofilms. Pneumococci within mature cardiac microlesions exhibited salient biofilm features including intrinsic resistance to antibiotic killing and the presence of an extracellular matrix. Dual RNA-seq and subsequent principal component analyses of heart- and blood-isolated pneumococci confirmed the biofilm phenotype in vivo and revealed stark anatomical site-specific differences in virulence gene expression; the latter having major implications on future vaccine antigen selection. Our RNA-seq approach also identified three genomic islands as exclusively expressed in vivo. Deletion of one such island, Region of Diversity 12, resulted in a biofilm-deficient and highly inflammogenic phenotype within the heart; indicating a possible link between the biofilm phenotype and a dampened host-response. We subsequently determined that biofilm pneumococci released greater amounts of the toxin pneumolysin than did planktonic or RD12 deficient pneumococci. This allowed heart-invaded wildtype pneumococci to kill resident cardiac macrophages and subsequently subvert cytokine/chemokine production and neutrophil infiltration into the myocardium. This is the first report for pneumococcal biofilm formation in an invasive disease setting. We show that biofilm pneumococci actively suppress the host response through pneumolysin-mediated immune cell killing. As such, our findings contradict the emerging notion that biofilm pneumococci are passively immunoquiescent.


Assuntos
Biofilmes , Macrófagos/imunologia , Miocardite/imunologia , Miocardite/microbiologia , Infecções Pneumocócicas/imunologia , Transcriptoma , Animais , Western Blotting , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Infecções Pneumocócicas/genética , Análise de Componente Principal , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Virulência/genética , Virulência/imunologia
4.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29109175

RESUMO

Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response-a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of ß-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased ß-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent.


Assuntos
Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/patogenicidade , Virulência/genética , Arginina/genética , Proteínas de Bactérias/genética , Comunicação Celular/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Aptidão Genética/genética , Proteínas Hemolisinas/genética , Humanos , Hidrolases/genética , Óperon/genética , Perforina/genética , Streptococcus agalactiae/genética , Transcriptoma/genética
5.
Infect Immun ; 84(10): 2922-32, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481242

RESUMO

Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose is absent from the nasopharynx, whereas galactose is abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells, thereby increasing its availability during colonization. We observed that S. pneumoniae mutants deficient in NanA and ß-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro Subsequently, we observed that glucose, sucrose, and fructose were inhibitory for biofilm formation, whereas galactose, lactose, and low concentrations of sialic acid were permissive. Together these findings suggested that the genes involved in biofilm formation were under some form of carbon catabolite repression (CCR), a regulatory network in which genes involved in the uptake and metabolism of less-preferred sugars are silenced during growth with preferred sugars. Supporting this notion, we observed that a mutant deficient in pyruvate oxidase, which converts pyruvate to acetyl-phosphate under non-CCR-inducing growth conditions, was unable to form biofilms. Subsequent comparative transcriptome sequencing (RNA-seq) analyses of planktonic and biofilm-grown pneumococci showed that metabolic pathways involving the conversion of pyruvate to acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently upregulated during diverse biofilm growth conditions. We conclude that carbon availability in the nasopharynx impacts pneumococcal biofilm formation in vivo Additionally, biofilm formation involves metabolic pathways not previously appreciated to play an important role.


Assuntos
Biofilmes/crescimento & desenvolvimento , Metabolismo dos Carboidratos/fisiologia , Carboidratos/farmacologia , Galactose/farmacocinética , Neuraminidase/fisiologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Análise de Variância , Animais , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Galactose/metabolismo , Galactose/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ácido N-Acetilneuramínico/metabolismo , Líquido da Lavagem Nasal/química , Septo Nasal/metabolismo , Septo Nasal/microbiologia , Nasofaringe/metabolismo , Nasofaringe/microbiologia , Neuraminidase/metabolismo , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , beta-Galactosidase/deficiência , beta-Galactosidase/metabolismo
6.
Antimicrob Agents Chemother ; 60(10): 5933-41, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458211

RESUMO

Despite the increasing prevalence of the nosocomial pathogen Acinetobacter baumannii, little is known about which genomic components contribute to clinical presentation of this important pathogen. Most whole-genome comparisons of A. baumannii have focused on specific genomic regions associated with phenotypes in a limited number of genomes. In this work, we describe the results of a whole-genome comparative analysis of 254 surveillance isolates of Acinetobacter species, 203 of which were A. baumannii, isolated from perianal swabs and sputum samples collected as part of an infection control active surveillance program at the University of Maryland Medical Center. The collection of surveillance isolates includes both carbapenem-susceptible and -resistant isolates. Based on the whole-genome phylogeny, the A. baumannii isolates collected belong to two major phylogenomic lineages. Results from multilocus sequence typing indicated that one of the major phylogenetic groups of A. baumannii was comprised solely of strains from the international clonal lineage 2. The genomic content of the A. baumannii isolates was examined using large-scale BLAST score ratio analysis to identify genes that are associated with carbapenem-susceptible and -resistant isolates, as well as genes potentially associated with the source of isolation. This analysis revealed a number of genes that were exclusive or at greater frequency in each of these classifications. This study is the most comprehensive genomic comparison of Acinetobacter isolates from a surveillance study to date and provides important information that will contribute to our understanding of the success of A. baumannii as a human pathogen.


Assuntos
Acinetobacter baumannii/genética , Genômica/métodos , Centros Médicos Acadêmicos , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/patogenicidade , Farmacorresistência Bacteriana/genética , Variação Genética , Genoma Bacteriano , Humanos , Maryland , Tipagem de Sequências Multilocus , Filogenia , beta-Lactamases/genética
7.
Emerg Infect Dis ; 20(3): 364-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24565502

RESUMO

Three recently sequenced strains isolated from patients during an outbreak of Mycobacterium abscessus subsp. massiliense infections at a cystic fibrosis center in the United States were compared with 6 strains from an outbreak at a cystic fibrosis center in the United Kingdom and worldwide strains. Strains from the 2 cystic fibrosis outbreaks showed high-level relatedness with each other and major-level relatedness with strains that caused soft tissue infections during an epidemic in Brazil. We identified unique single-nucleotide polymorphisms in cystic fibrosis and soft tissue outbreak strains, separate single-nucleotide polymorphisms only in cystic fibrosis outbreak strains, and unique genomic traits for each subset of isolates. Our findings highlight the necessity of identifying M. abscessus to the subspecies level and screening all cystic fibrosis isolates for relatedness to these outbreak strains. We propose 2 diagnostic strategies that use partial sequencing of rpoB and secA1 genes and a multilocus sequence typing protocol.


Assuntos
Surtos de Doenças , Infecções por Mycobacterium/epidemiologia , Mycobacterium/isolamento & purificação , Brasil , Fibrose Cística/complicações , Genoma Bacteriano , Humanos , Tipagem de Sequências Multilocus , Mycobacterium/classificação , Mycobacterium/genética , Infecções por Mycobacterium/complicações , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/microbiologia , Filogenia , Polimorfismo de Nucleotídeo Único , Reino Unido , Estados Unidos
8.
Proc Natl Acad Sci U S A ; 108(11): 4494-9, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21368196

RESUMO

Molecular data on a limited number of chromosomal loci have shown that the population of Neisseria meningitidis (Nm), a deadly human pathogen, is structured in distinct lineages. Given that the Nm population undergoes substantial recombination, the mechanisms resulting in the evolution of these lineages, their persistence in time, and the implications for the pathogenicity of the bacterium are not yet completely understood. Based on whole-genome sequencing, we show that Nm is structured in phylogenetic clades. Through acquisition of specific genes and through insertions and rearrangements, each clade has acquired and remodeled specific genomic tracts, with the potential to impact on the commensal and virulence behavior of Nm. Despite this clear evidence of a structured population, we confirm high rates of detectable recombination throughout the whole Nm chromosome. However, gene conversion events were found to be longer within clades than between clades, suggesting a DNA cleavage mechanism associated with the phylogeny of the species. We identify 22 restriction modification systems, probably acquired by horizontal gene transfer from outside of the species/genus, whose distribution in the different strains coincides with the phylogenetic clade structure. We provide evidence that these clade-associated restriction modification systems generate a differential barrier to DNA exchange consistent with the observed population structure. These findings have general implications for the emergence of lineage structure and virulence in recombining bacterial populations, and they could provide an evolutionary framework for the population biology of a number of other bacterial species that show contradictory population structure and dynamics.


Assuntos
Enzimas de Restrição-Modificação do DNA/genética , Neisseria meningitidis/classificação , Neisseria meningitidis/genética , Filogenia , Recombinação Genética , Sequência de Bases , Inversão Cromossômica/genética , Segregação de Cromossomos/genética , Sequência Conservada/genética , DNA Bacteriano/genética , Conversão Gênica/genética , Genes Bacterianos/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Mutagênese Insercional/genética , Neisseria meningitidis/crescimento & desenvolvimento , Neisseria meningitidis/patogenicidade , Óperon/genética , Especificidade da Espécie
9.
J Bacteriol ; 194(19): 5450, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22965080

RESUMO

Mycobacterium massiliense (Mycobacterium abscessus group) is an emerging pathogen causing pulmonary disease and skin and soft tissue infections. We report the genome sequence of the type strain CCUG 48898.


Assuntos
Infecções por Mycobacterium/microbiologia , Mycobacterium/classificação , Mycobacterium/genética , Genoma Bacteriano , Humanos , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único
10.
J Bacteriol ; 194(11): 3026-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22582382

RESUMO

We report the draft genome sequences of the collection referred to as the Escherichia coli DECA collection, which was assembled to contain representative isolates of the 15 most common diarrheagenic clones in humans (http://shigatox.net/new/). These genomes represent a valuable resource to the community of researchers who examine these enteric pathogens.


Assuntos
Diarreia/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Genoma Bacteriano , Sequência de Bases , Pré-Escolar , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular
11.
J Bacteriol ; 193(15): 4039-40, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622741

RESUMO

Chlamydia psittaci is a highly prevalent avian pathogen and the cause of a potentially lethal zoonosis, causing life-threatening pneumonia in humans. We report the genome sequences of C. psittaci 6BC, the prototype strain of the species, and C. psittaci Cal10, a widely used laboratory strain.


Assuntos
Chlamydophila psittaci/genética , Chlamydophila psittaci/isolamento & purificação , Genoma Bacteriano , Papagaios/microbiologia , Zoonoses/microbiologia , Animais , Sequência de Bases , Humanos , Dados de Sequência Molecular , Psitacose/microbiologia
12.
J Bacteriol ; 193(8): 1854-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21317317

RESUMO

Cocolonization of human mucosal surfaces causes frequent encounters between various staphylococcal species, creating opportunities for the horizontal acquisition of mobile genetic elements. The majority of Staphylococcus aureus toxins and virulence factors are encoded on S. aureus pathogenicity islands (SaPIs). Horizontal movement of SaPIs between S. aureus strains plays a role in the evolution of virulent clinical isolates. Although there have been reports of the production of toxic shock syndrome toxin 1 (TSST-1), enterotoxin, and other superantigens by coagulase-negative staphylococci, no associated pathogenicity islands have been found in the genome of Staphylococcus epidermidis, a generally less virulent relative of S. aureus. We show here the first evidence of a composite S. epidermidis pathogenicity island (SePI), the product of multiple insertions in the genome of a clinical isolate. The taxonomic placement of S. epidermidis strain FRI909 was confirmed by a number of biochemical tests and multilocus sequence typing. The genome sequence of this strain was analyzed for other unique gene clusters and their locations. This pathogenicity island encodes and expresses staphylococcal enterotoxin C3 (SEC3) and staphylococcal enterotoxin-like toxin L (SElL), as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and immunoblotting. We present here an initial characterization of this novel pathogenicity island, and we establish that it is stable, expresses enterotoxins, and is not obviously transmissible by phage transduction. We also describe the genome sequence, excision, replication, and packaging of a novel bacteriophage in S. epidermidis FRI909, as well as attempts to mobilize the SePI element by this phage.


Assuntos
Proteínas de Bactérias/genética , Enterotoxinas/genética , Ilhas Genômicas , Staphylococcus epidermidis/genética , Fatores de Virulência/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Mutagênese Insercional , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/classificação , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/patogenicidade
13.
Nature ; 432(7019): 910-3, 2004 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-15602564

RESUMO

Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise approximately 10-20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.


Assuntos
Adaptação Fisiológica/genética , Genoma Bacteriano , Plâncton/genética , Plâncton/fisiologia , Roseobacter/genética , Roseobacter/fisiologia , Água do Mar/microbiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Genes Bacterianos/genética , Biologia Marinha , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Plâncton/classificação , RNA Ribossômico 16S/genética , Roseobacter/classificação
14.
Virulence ; 11(1): 1656-1673, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33356838

RESUMO

Summary: We characterized Mycobacterium bovis BCG isolates found in lung and brain samples from a previously vaccinated patient with IFNγR1 deficiency. The isolates collected displayed distinct genomic and phenotypic features consistent with host adaptation and associated changes in antibiotic susceptibility and virulence traits. Background: We report a case of a patient with partial recessive IFNγR1 deficiency who developed disseminated BCG infection after neonatal vaccination (BCG-vaccine). Distinct M. bovis BCG-vaccine derived clinical strains were recovered from the patient's lungs and brain. Methods: BCG strains were phenotypically (growth, antibiotic susceptibility, lipid) and genetically (whole genome sequencing) characterized. Mycobacteria cell infection models were used to assess apoptosis, necrosis, cytokine release, autophagy, and JAK-STAT signaling. Results: Clinical isolates BCG-brain and BCG-lung showed distinct Rv0667 rpoB mutations conferring high- and low-level rifampin resistance; the latter displayed clofazimine resistance through Rv0678 gene (MarR-like transcriptional regulator) mutations. BCG-brain and BCG-lung showed mutations in fadA2, fadE5, and mymA operon genes, respectively. Lipid profiles revealed reduced levels of PDIM in BCG-brain and BCG-lung and increased TAGs and Mycolic acid components in BCG-lung, compared to parent BCG-vaccine. In vitro infected cells showed that the BCG-lung induced a higher cytokine release, necrosis, and cell-associated bacterial load effect when compared to BCG-brain; conversely, both strains inhibited apoptosis and altered JAK-STAT signaling. Conclusions: During a chronic-disseminated BCG infection, BCG strains can evolve independently at different sites likely due to particular microenvironment features leading to differential antibiotic resistance, virulence traits resulting in dissimilar responses in different host tissues.


Assuntos
Vacina BCG/efeitos adversos , Vacina BCG/imunologia , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , Receptores de Interferon/genética , Tuberculose/sangue , Tuberculose/diagnóstico , Animais , Antibacterianos/farmacologia , Vacina BCG/administração & dosagem , Encéfalo/microbiologia , Bovinos , Pré-Escolar , Farmacorresistência Bacteriana , Humanos , Pulmão/microbiologia , Masculino , Mutação , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/genética , Receptores de Interferon/deficiência , Vacinação , Virulência , Receptor de Interferon gama
15.
Appl Environ Microbiol ; 75(7): 2046-56, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19201974

RESUMO

The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N(2) fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Genoma Bacteriano , Microbiologia do Solo , Antibacterianos/biossíntese , Transporte Biológico , Metabolismo dos Carboidratos , Cianobactérias/genética , DNA Bacteriano/química , Fungos/genética , Macrolídeos/metabolismo , Dados de Sequência Molecular , Nitrogênio/metabolismo , Filogenia , Proteobactérias/genética , Análise de Sequência de DNA , Homologia de Sequência
16.
PLoS Biol ; 4(6): e188, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16729848

RESUMO

Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata), which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192-base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids) that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential targets for controlling plant pathogens such as Xylella fastidiosa, a major agroeconomic problem, for which H. coagulata and other sharpshooters serve as vectors of transmission.


Assuntos
Afídeos/metabolismo , Afídeos/microbiologia , Bacteroidetes/metabolismo , Simbiose/genética , Simbiose/fisiologia , Aminoácidos/biossíntese , Aminoácidos/deficiência , Animais , Coenzimas/biossíntese , Evolução Molecular , Previsões , Genes Bacterianos , Genoma Bacteriano , Genômica/métodos , Redes e Vias Metabólicas , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Vitaminas/biossíntese
17.
PLoS Genet ; 2(12): e214, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17194220

RESUMO

Arthrobacter sp. strains are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils. Member of the genus are metabolically and ecologically diverse and have the ability to survive in environmentally harsh conditions for extended periods of time. The genome of Arthrobacter aurescens strain TC1, which was originally isolated from soil at an atrazine spill site, is composed of a single 4,597,686 basepair (bp) circular chromosome and two circular plasmids, pTC1 and pTC2, which are 408,237 bp and 300,725 bp, respectively. Over 66% of the 4,702 open reading frames (ORFs) present in the TC1 genome could be assigned a putative function, and 13.2% (623 genes) appear to be unique to this bacterium, suggesting niche specialization. The genome of TC1 is most similar to that of Tropheryma, Leifsonia, Streptomyces, and Corynebacterium glutamicum, and analyses suggest that A. aurescens TC1 has expanded its metabolic abilities by relying on the duplication of catabolic genes and by funneling metabolic intermediates generated by plasmid-borne genes to chromosomally encoded pathways. The data presented here suggest that Arthrobacter's environmental prevalence may be due to its ability to survive under stressful conditions induced by starvation, ionizing radiation, oxygen radicals, and toxic chemicals.


Assuntos
Arthrobacter/crescimento & desenvolvimento , Arthrobacter/genética , Genoma Bacteriano/genética , Análise de Sequência de DNA , Microbiologia do Solo , Arthrobacter/química , Arthrobacter/metabolismo , Atrazina/metabolismo , Biodegradação Ambiental , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/fisiologia , Elementos de DNA Transponíveis/genética , DNA Circular/química , Metabolismo Energético/genética , Dados de Sequência Molecular , Filogenia , Plasmídeos/genética , Sequências Repetitivas de Ácido Nucleico
18.
PLoS Genet ; 2(2): e21, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16482227

RESUMO

Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.


Assuntos
Ehrlichia/genética , Ehrlichiose/genética , Genômica/métodos , Animais , Biotina/metabolismo , Reparo do DNA , Ehrlichiose/microbiologia , Genoma , Humanos , Modelos Biológicos , Filogenia , Rickettsia/genética , Carrapatos
19.
PLoS Biol ; 3(1): e15, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15660156

RESUMO

Sequencing and comparative genome analysis of four strains of Campylobacter including C. lari RM2100, C. upsaliensis RM3195, and C. coli RM2228 has revealed major structural differences that are associated with the insertion of phage- and plasmid-like genomic islands, as well as major variations in the lipooligosaccharide complex. Poly G tracts are longer, are greater in number, and show greater variability in C. upsaliensis than in the other species. Many genes involved in host colonization, including racR/S, cadF, cdt, ciaB, and flagellin genes, are conserved across the species, but variations that appear to be species specific are evident for a lipooligosaccharide locus, a capsular (extracellular) polysaccharide locus, and a novel Campylobacter putative licABCD virulence locus. The strains also vary in their metabolic profiles, as well as their resistance profiles to a range of antibiotics. It is evident that the newly identified hypothetical and conserved hypothetical proteins, as well as uncharacterized two-component regulatory systems and membrane proteins, may hold additional significant information on the major differences in virulence among the species, as well as the specificity of the strains for particular hosts.


Assuntos
Campylobacter/genética , Campylobacter/patogenicidade , Genoma Bacteriano , Virulência/genética , Animais , Proteínas de Bactérias/genética , Doenças das Aves/microbiologia , Aves , Campylobacter/classificação , Bovinos , Doenças dos Bovinos/microbiologia , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Suínos , Doenças dos Suínos/microbiologia
20.
Nat Biotechnol ; 23(7): 873-8, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15980861

RESUMO

Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.


Assuntos
Genoma Bacteriano , Pseudomonas fluorescens/genética , Sequência de Bases , Transporte Biológico/genética , Genes Bacterianos , Dados de Sequência Molecular , Família Multigênica , Plantas/microbiologia , Pseudomonas fluorescens/metabolismo , Análise de Sequência de DNA , Sideróforos/biossíntese , Sideróforos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa