Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 46(3): 488-491, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528391

RESUMO

We demonstrate for the first time, to the best of our knowledge, an on-chip microwave photonic (MWP) notch filter with high stopband rejection and integrated optical carrier suppression in a phase modulator-based system. The notch filter was achieved through phase modulation to intensity modulation (PM-to-IM) transformation and dual-sideband-processing using a network of three ring resonators (RRs) in a low-loss silicon nitride (Si3N4) platform. We show simultaneous PM-to-IM conversion and optical carrier processing for enhancing the filter performance using a single RR. We achieve filtering with a high stopband rejection of >55dB, an optical carrier suppression up to 3 dB, a radio frequency link gain of 3 dB, a noise figure of 31 dB, and a spurious-free dynamic range of 100dB⋅Hz2/3. These experiments point to the importance of vectorial spectral shaping of an MWP spectrum for advanced functionalities.

2.
Opt Express ; 28(26): 38603-38615, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379427

RESUMO

An on-chip linearization method for phase modulated microwave photonic link based on integrated ring resonators is proposed. By properly tailoring the phase and amplitude of optical carrier band and second-order sidebands, the third-order intermodulation distortion (IMD3) components can be suppressed. Theoretical analysis are taken and a proof-of-concept experiment is carried out. Experimental results demonstrate that IMD3 is suppressed by 21.7 dB. When the noise of the link is properly optimized, an SFDR of 112.7 dB·Hz2/3 can be achieved. This opens the possibility of integrating linearization into a functional photonic integrated circuit.

3.
Opt Express ; 27(22): 31727-31740, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684399

RESUMO

Microwave photonic bandpass filters (MPBPFs) are important building blocks in radio-frequency (RF) signal processing systems. However, most of the reported MPBPFs fail to satisfy the stringent real-world performance metrics, particularly low RF insertion loss. In this paper we report a novel MPBPF scheme using two cascaded integrated silicon nitride (Si3N4) ring resonators, achieving a high link gain in the RF filter passband. In this scheme, one ring operates at an optimal over-coupling condition to enable a strong RF passband whilst an auxiliary ring is used to increase the detected RF signal power via tuning the optical carrier-to-sideband ratio. The unique combination of these two techniques enables compact size as well as high RF performance. Compared to previously reported ring-based MPBPFs, this work achieves a record-high RF gain of 1.8 dB in the passband, with a high spectral resolution of 260 MHz. Furthermore, a multi-band MPBPF with optimized RF gain, tunable central frequencies, and frequency spacing tunability is realized using additional ring resonators, highlighting the scalability and flexibility of this chip-based MPBPF scheme.

4.
Nat Commun ; 13(1): 7798, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528603

RESUMO

Microwave photonics has adopted a number of important concepts and technologies over the recent pasts, including photonic integration, versatile programmability, and techniques for enhancing key radio frequency performance metrics such as the noise figure and the dynamic range. However, to date, these aspects have not been achieved simultaneously in a single circuit. Here, we report a multi-functional photonic integrated circuit that enables programmable filtering functions with record-high performance. We demonstrate reconfigurable filter functions with record-low noise figure and a RF notch filter with ultra-high dynamic range. We achieve this unique feature using versatile complex spectrum tailoring enabled by an all integrated modulation transformer and a double injection ring resonator as a multi-function optical filtering component. Our work breaks the conventional and fragmented approach of integration, functionality and performance that currently prevents the adoption of integrated MWP systems in real applications.

5.
Sci Adv ; 8(40): eabq2196, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36206345

RESUMO

Coherent optomechanical interaction known as stimulated Brillouin scattering (SBS) can enable ultrahigh resolution signal processing and narrow-linewidth lasers. SBS has recently been studied extensively in integrated waveguides; however, many implementations rely on complicated fabrication schemes. The absence of SBS in standard and mature fabrication platforms prevents its large-scale circuit integration. Notably, SBS in the emerging silicon nitride (Si3N4) photonic integration platform is currently out of reach because of the lack of acoustic guidance. Here, we demonstrate advanced control of backward SBS in multilayer Si3N4 waveguides. By optimizing the separation between two Si3N4 layers, we unlock acoustic waveguiding in this platform, potentially leading up to 15× higher Brillouin gain coefficient than previously possible in Si3N4 waveguides. We use the enhanced SBS gain to demonstrate a high-rejection microwave photonic notch filter. This demonstration opens a path to achieving Brillouin-based photonic circuits in a standard, low-loss Si3N4 platform.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa