Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 105(14): 147203, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21230864

RESUMO

Measurements of the local susceptibility and 3d spin relaxation rate for single Fe impurities embedded in a nanocrystalline Nb host indicates the emergence of a local moment on Fe at and below a critical size of 11 nm. Our ab initio electronic structure calculations show that the moment formation occurs due to Stoner enhancement arising from a size dependent lattice expansion and a consequent shift in the Fermi level. We also show that a size-induced positive host spin polarization of the Nb-4d band electrons strongly influences the fluctuation rate of the Fe moment.

2.
J Phys Condens Matter ; 24(8): 085601, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22277293

RESUMO

We have made bulk and local investigations on defect induced magnetism in highly oriented pyrolytic graphite (HOPG) irradiated with a 40 MeV carbon beam. The local magnetic response of irradiated HOPG was studied by measuring the hyperfine field of recoil implanted (19)F using γ-ray time differential perturbed angular distribution (TDPAD) measurements. While the bulk magnetic properties of the irradiated sample show features characteristic of room temperature ferromagnetism, the hyperfine field data reflect enhanced paramagnetism with no indication of long range magnetic ordering. The experimental studies are further supported by ab initio density functional calculations. We believe that the ferromagnetic response in irradiated HOPG arises mostly from defect induced magnetic moments of carbon atoms in the near surface region, while those deep inside the host matrix remain paramagnetic.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa