Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 64: 102847, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863275

RESUMO

Single nucleotide polymorphisms (SNPs) can be analysed for identity or kinship applications in forensic genetics to either provide an adjunct to traditional STR typing or as a stand-alone approach. The advent of massively parallel sequencing technology (MPS) has provided a useful opportunity to more easily deploy SNP typing in a forensic context, given the ability to simultaneously amplify a large number of markers. Furthermore, MPS also provides valuable sequence data for the targeted regions, which enables the detection of any additional variation seen in the flanking regions of amplicons. In this study we genotyped 977 samples across five UK-relevant population groups (White British, East Asian, South Asian, North-East African and West African) for 94 identity-informative SNP markers using the ForenSeq DNA Signature Prep Kit. Examination of flanking region variation allowed for the identification of 158 additional alleles across all populations studied. Here we present allele frequencies for all 94 identity-informative SNPs, both including and excluding the flanking region sequence of these markers. We also present information on the configuration of these SNPs in the ForenSeq DNA Signature Prep Kit, including performance metrics for the markers and investigation of bioinformatic and chemistry-based discordances. Overall, the inclusion of flanking region variation in the analysing workflow for these markers reduced the average combined match probability 2175 times across all populations, with a maximum reduction of 675,000-fold in the West African population. The gain due to flanking region-based discrimination increased the heterozygosity of some loci above that of some of the least useful forensic STR loci; thus demonstrating the benefit of enhanced analysis of currently targeted SNP markers for forensic applications.


Assuntos
Impressões Digitais de DNA , Polimorfismo de Nucleotídeo Único , Humanos , Repetições de Microssatélites , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala , DNA
2.
Forensic Sci Int Genet ; 48: 102356, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32712568

RESUMO

The application of massively parallel sequencing (MPS) to forensic genetics has led to improvements in multiple aspects of DNA analysis, however, additional complexities are concurrently associated with these advances. In relation to short tandem repeat (STR) typing, the move to sequence rather than length-based methodologies has highlighted the extent to which previous allelic variation was masked - both within and outside of the repeat regions (the flanking regions). In order to fully implement MPS for autosomal STR analysis, sequence-based allelic frequencies must be available, and concordance with previous typing techniques needs to be assessed. In this work, a series of samples (n = 1007) from five different population groups were genotyped using the MiSeq FGx™ Forensic Genomics System. Results were compared to those obtained using capillary electrophoresis (CE), and sequence variation has been characterised both within and outside STR repeat regions, with allelic frequencies provided for all variants observed within this database. Analysing and characterising flanking region sequence is currently less straightforward than studying repeat region variation alone, and the added value of doing so remains largely unexplored - this paper provides data to show that the gain in polymorphism achieved when analysing flanking regions is less than might be expected. In the White British population for example, including the sequence variation within repeat regions of 26 autosomal STRs made the average combined random match probability (RMP) over 700 times lower than with length-based alleles alone. Including the sequence variation within the flanking regions only resulted in a combined RMP that was a further 4 times lower.


Assuntos
Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Impressões Digitais de DNA , Eletroforese Capilar , Variação Genética , Genótipo , Humanos , Grupos Raciais/genética , Análise de Sequência de DNA
3.
Forensic Sci Int Genet ; 34: 57-61, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29413636

RESUMO

By using sequencing technology to genotype loci of forensic interest it is possible to simultaneously target autosomal, X and Y STRs as well as identity, ancestry and phenotypic informative SNPs, resulting in a breadth of data obtained from a single run that is considerable when compared to that generated with standard technologies. It is important however that this information aligns with the genotype data currently obtained using commercially available kits for CE-based investigations such that results are compatible with existing databases and hence can be of use to the forensic community. In this work, 400 samples were typed using commercially available STR kits and CE, as well as using the Ilumina ForenSeq™ DNA Signature Prep Kit and MiSeq® FGx to assess concordance of autosomal STRs and population variability. Results show a concordance rate between the two technologies exceeding 99.98% while numerous novel sequence based alleles are described. In order to make use of the sequence variation observed, sequence specific allele frequencies were generated for White British and British Chinese populations.


Assuntos
Povo Asiático/genética , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Análise de Sequência de DNA , População Branca/genética , Alelos , Impressões Digitais de DNA , Eletroforese Capilar , Frequência do Gene , Humanos , Reação em Cadeia da Polimerase , Reino Unido
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa