Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurobiol Dis ; 90: 3-19, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26494254

RESUMO

Mitochondria are dynamic organelles that continually move, fuse and divide. The dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs, keeps mitochondria in good health by restoring or removing damaged organelles or precipitates cells in apoptosis in cases of severe defects. Mitochondrial fusion and fission are essential in mammals and their disturbances are associated with several diseases. However, while mitochondrial fusion/fission dynamics, and the proteins that control these processes, are ubiquitous, associated diseases are primarily neurological disorders. Accordingly, inactivation of the main actors of mitochondrial fusion/fission dynamics is associated with defects in neuronal development, plasticity and functioning, both ex vivo and in vivo. Here, we present the central actors of mitochondrial fusion and fission and review the role of mitochondrial dynamics in neuronal physiology and pathophysiology. Particular emphasis is placed on the three main actors of these processes i.e. DRP1,MFN1-2, and OPA1 as well as on GDAP1, a protein of the mitochondrial outer membrane preferentially expressed in neurons. This article is part of a Special Issue entitled: Mitochondria & Brain.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Doenças Neurodegenerativas/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo
2.
J Frailty Aging ; 10(2): 86-93, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575696

RESUMO

Aging is the most important risk factor for the onset of several chronic diseases and functional decline. Understanding the interplays between biological aging and the biology of diseases and functional loss as well as integrating a function-centered approach to the care pathway of older adults are crucial steps towards the elaboration of preventive strategies (both pharmacological and non-pharmacological) against the onset and severity of burdensome chronic conditions during aging. In order to tackle these two crucial challenges, ie, how both the manipulation of biological aging and the implementation of a function-centered care pathway (the Integrated Care for Older People (ICOPE) model of the World Health Organization) may contribute to the trajectories of healthy aging, a new initiative on Gerosciences was built: the INSPIRE research program. The present article describes the scientific background on which the foundations of the INSPIRE program have been constructed and provides the general lines of this initiative that involves researchers from basic and translational science, clinical gerontology, geriatrics and primary care, and public health.


Assuntos
Pesquisa Biomédica , Geriatria , Envelhecimento Saudável , Idoso , Animais , Atenção à Saúde , Humanos , Modelos Animais
3.
J Frailty Aging ; 10(2): 110-120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575699

RESUMO

BACKGROUND: The Geroscience field focuses on the core biological mechanisms of aging, which are involved in the onset of age-related diseases, as well as declines in intrinsic capacity (IC) (body functions) leading to dependency. A better understanding on how to measure the true age of an individual or biological aging is an essential step that may lead to the definition of putative markers capable of predicting healthy aging. OBJECTIVES: The main objective of the INStitute for Prevention healthy agIng and medicine Rejuvenative (INSPIRE) Platform initiative is to build a program for Geroscience and healthy aging research going from animal models to humans and the health care system. The specific aim of the INSPIRE human translational cohort (INSPIRE-T cohort) is to gather clinical, digital and imaging data, and perform relevant and extensive biobanking to allow basic and translational research on humans. METHODS: The INSPIRE-T cohort consists in a population study comprising 1000 individuals in Toulouse and surrounding areas (France) of different ages (20 years or over - no upper limit for age) and functional capacity levels (from robustness to frailty, and even dependency) with follow-up over 10 years. Diversified data are collected annually in research facilities or at home according to standardized procedures. Between two annual visits, IC domains are monitored every 4-month by using the ICOPE Monitor app developed in collaboration with WHO. Once IC decline is confirmed, participants will have a clinical assessment and blood sampling to investigate markers of aging at the time IC declines are detected. Biospecimens include blood, urine, saliva, and dental plaque that are collected from all subjects at baseline and then, annually. Nasopharyngeal swabs and cutaneous surface samples are collected in a large subgroup of subjects every two years. Feces, hair bulb and skin biopsy are collected optionally at the baseline visit and will be performed again during the longitudinal follow up. EXPECTED RESULTS: Recruitment started on October 2019 and is expected to last for two years. Bio-resources collected and explored in the INSPIRE-T cohort will be available for academic and industry partners aiming to identify robust (set of) markers of aging, age-related diseases and IC evolution that could be pharmacologically or non-pharmacologically targetable. The INSPIRE-T will also aim to develop an integrative approach to explore the use of innovative technologies and a new, function and person-centered health care pathway that will promote a healthy aging.


Assuntos
Bancos de Espécimes Biológicos , Geriatria , Envelhecimento Saudável , Pesquisa Translacional Biomédica , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , França , Humanos , Pessoa de Meia-Idade
4.
J Frailty Aging ; 10(4): 313-319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34549244

RESUMO

The find solutions for optimizing healthy aging and increase health span is one of the main challenges for our society. A novel healthcare model based on integration and a shift on research and care towards the maintenance of optimal functional levels are now seen as priorities by the WHO. To address this issue, an integrative global strategy mixing longitudinal and experimental cohorts with an innovative transverse understanding of physiological functioning is missing. While the current approach to the biology of aging is mainly focused on parenchymal cells, we propose that age-related loss of function is largely determined by three elements which constitute the general ground supporting the different specific parenchyma: i.e. the stroma, the immune system and metabolism. Such strategy that is implemented in INSPIRE projects can strongly help to find a composite biomarker capable of predicting changes in capacity across the life course with thresholds signalling frailty and care dependence.


Assuntos
Fragilidade , Envelhecimento Saudável , Envelhecimento , Biomarcadores , Humanos
5.
J Frailty Aging ; 10(2): 121-131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575700

RESUMO

Aging is the major risk factor for the development of chronic diseases. After decades of research focused on extending lifespan, current efforts seek primarily to promote healthy aging. Recent advances suggest that biological processes linked to aging are more reliable than chronological age to account for an individual's functional status, i.e. frail or robust. It is becoming increasingly apparent that biological aging may be detectable as a progressive loss of resilience much earlier than the appearance of clinical signs of frailty. In this context, the INSPIRE program was built to identify the mechanisms of accelerated aging and the early biological signs predicting frailty and pathological aging. To address this issue, we designed a cohort of outbred Swiss mice (1576 male and female mice) in which we will continuously monitor spontaneous and voluntary physical activity from 6 to 24 months of age under either normal or high fat/high sucrose diet. At different age points (6, 12, 18, 24 months), multiorgan functional phenotyping will be carried out to identify early signs of organ dysfunction and generate a large biological fluids/feces/organs biobank (100,000 samples). A comprehensive correlation between functional and biological phenotypes will be assessed to determine: 1) the early signs of biological aging and their relationship with chronological age; 2) the role of dietary and exercise interventions on accelerating or decelerating the rate of biological aging; and 3) novel targets for the promotion of healthy aging. All the functional and omics data, as well as the biobank generated in the framework of the INSPIRE cohort will be available to the aging scientific community. The present article describes the scientific background and the strategies employed for the design of the INSPIRE Mouse cohort.


Assuntos
Envelhecimento , Animais , Estudos de Coortes , Feminino , Masculino , Camundongos
6.
Oncogene ; 19(18): 2179-85, 2000 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-10822367

RESUMO

The CDC25B dual specificity phosphatase is involved in the control of the G2/M transition of the cell cycle. Subcellular localization might represent an important aspect of the regulation of its activity. We have examined in transiently transfected asynchronous HeLa cells the localization of HA-tagged CDC25B proteins and found that they are nuclear or cytoplasmic suggesting the existence of an active shuttling. Accordingly, localization analysis of deletion and truncation proteins indicates that CDC25B contains a putative nuclear localization signal located between residues 335 and 354. We also demonstrated that a short 58 residues deletion of the amino-terminus end of CDC25B is sufficient to retain it to the nucleus. Mutational analysis indicates that a nuclear export sequence is located between residues 28 and 40. In addition, treatment of the cells with the exportin inhibitor, Leptomycin B, has the same effect. The mutation of Ser-323, a residue that is essential for the interaction with 14-3-3 proteins, also abolishes cytoplasmic staining. The subcellular localization of CDC25B is therefore dependent on the combined effects of a nuclear localization signal, a nuclear export signal and on the interaction with 14-3-3 proteins.


Assuntos
Proteínas de Ciclo Celular/isolamento & purificação , Tirosina 3-Mono-Oxigenase , Fosfatases cdc25/isolamento & purificação , Proteínas 14-3-3 , Sequência de Aminoácidos , Transporte Biológico , Compartimento Celular , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/química , Ciclina B/metabolismo , Citoplasma/química , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Sinais de Localização Nuclear , Ligação Proteica , Proteínas/metabolismo , Fosfatases cdc25/metabolismo
7.
Pathol Biol (Paris) ; 48(3): 182-9, 2000 Apr.
Artigo em Francês | MEDLINE | ID: mdl-10858952

RESUMO

Progression in cell cycle is controlled by CDKs (cyclin dependent kinases) and their cyclins regulatory subunits. In mammalian cells, three dual specificity phosphatases called CDC25 activate CDKs/cyclin complexes. The activity of CDC25 is regulated by phosphorylation and dephosphorylation events. CDC25 phosphatases also participate in cell cycle checkpoints activated in response to DNA damage. Two members of this family, CDC25 A and CDC25 B, have oncogenic properties, and their overexpression has been detected in various types of tumors.


Assuntos
Divisão Celular/fisiologia , Fosfatases cdc25/fisiologia , Animais , Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA , Ativação Enzimática , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Fosfatases cdc25/genética
8.
Exp Cell Res ; 257(1): 206-12, 2000 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-10854069

RESUMO

HeLa cells exposed to Escherichia coli cytolethal distending toxins (CDT) arrest their cell cycle at the G2/M transition. We have shown previously that in these cells the CDK1/cyclin B complex is inactive and can be reactivated in vitro using recombinant CDC25 phosphatase. Here we have investigated in vivo the effects of CDC25 on this cell cycle checkpoint. We report that overexpression of CDC25B or CDC25C overrides an established CDT-induced G2 cell cycle arrest and leads the cells to accumulate in an abnormal mitotic stage with condensed chromatin and high CDK1 activity. This effect can be counteracted by coexpression of the WEE1 kinase. In contrast, overexpression of CDC25B or C prior to CDT treatment prevents G2 arrest and allows most of the cells to progress through mitosis with only a low percentage of cells arrested in abnormal mitosis. The implications of these results on the biochemical nature of the CDT-induced cell cycle arrest are discussed.


Assuntos
Toxinas Bacterianas/toxicidade , Proteínas de Ciclo Celular , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proteínas Nucleares , Fosfatases cdc25/fisiologia , Escherichia coli , Células HeLa , Humanos , Proteínas Tirosina Quinases/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa