Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(3): 1270-1280, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180309

RESUMO

Genome lesions trigger biological responses that help cells manage damaged DNA, improving cell survival. Pol eta is a translesion synthesis (TLS) polymerase that bypasses lesions that block replicative polymerases, avoiding continued stalling of replication forks, which could lead to cell death. p53 also plays an important role in preventing cell death after ultraviolet (UV) light exposure. Intriguingly, we show that p53 does so by favoring translesion DNA synthesis by pol eta. In fact, the p53-dependent induction of pol eta in normal and DNA repair-deficient XP-C human cells after UV exposure has a protective effect on cell survival after challenging UV exposures, which was absent in p53- and Pol H-silenced cells. Viability increase was associated with improved elongation of nascent DNA, indicating the protective effect was due to more efficient lesion bypass by pol eta. This protection was observed in cells proficient or deficient in nucleotide excision repair, suggesting that, from a cell survival perspective, proper bypass of DNA damage can be as relevant as removal. These results indicate p53 controls the induction of pol eta in DNA damaged human cells, resulting in improved TLS and enhancing cell tolerance to DNA damage, which parallels SOS responses in bacteria.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Sobrevivência Celular , Cromatina/metabolismo , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/genética , Relação Dose-Resposta à Radiação , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Raios Ultravioleta
2.
Sci Rep ; 10(1): 17893, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087767

RESUMO

Since melanomas often retain wild type p53, we developed an adenoviral vector, AdRGD-PG, which provides robust transduction and transgene expression in response to p53. Previously, this vector was used for interferon-ß gene transfer in mouse models of melanoma, resulting in control of tumor progression, but limited cell killing. Here, the AdRGD-PG-hIFNß vector encoding the human interferon-ß cDNA (hIFNß) was used to transduce human melanoma cell lines SK-MEL-05 and SK-MEL-147 (both wild type p53). In vitro, cell death was induced in more than 80% of the cells and correlated with elevated annexinV staining and caspase 3/7 activity. Treatment with hIFNß promoted cell killing in neighboring, non-transduced cells, thus revealing a bystander effect. In situ gene therapy resulted in complete inhibition of tumor progression for SK-MEL-147 when using nude mice with no evidence of hepatotoxicity. However, the response in Nod-Scid mice was less robust. For SK-MEL-05, tumor inhibition was similar in nude and Nod-Scid mice and was less efficient than seen for SK-MEL-147, indicating both cell type and host specific responses. The AdRGD-PG-hIFNß vector provides extensive killing of human melanoma cells in vitro and a potent anti-tumor effect in vivo. This study provides a critical advance in the development of our melanoma gene therapy approach.


Assuntos
Adenoviridae , Técnicas de Transferência de Genes , Vetores Genéticos , Interferon beta/genética , Melanoma/genética , Melanoma/patologia , Animais , Anexina A5/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , DNA Complementar , Terapia Genética , Humanos , Melanoma/terapia , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Terapia de Alvo Molecular , Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa